HUMAN Sample Experiment High Altitude Simulation

(a one variable experiment)

(version 5/04/06)

Students wish to simulate an ascent to the summit of Mount Mckinley (12,500 ft.), perhaps to compare the simulated data with actual data from a published experiment. The approximate barometric pressure at this height is 480 mmHg.

1) To set up HUMAN at <u>sea level</u> before ascending (i.e. control), at the opening screen (see below)

	Set	up Experiment / Patie	ent
 Experiment Patient 	number 1	Run for 0 min.	Printing every 0 min.

Select

- Pick Experiment number 1 (see above left)
- Run for 0 minutes with 0 minutes between printouts.

Click on <Run> (lower right)

- this results in the "Output from Human Program" shown below (top)

2) HUMAN is now ready to be set up at <u>high altitude</u> for a <u>6 day experiment</u> while tracking the <u>respiratory</u> and <u>blood gas responses</u> in its tables. The steps involved in this setup are shown below.

Skidmore Colle	ege	OL	utput from W Physiology S	eb-HUMAN imulation	<u>Manual</u>	Ver. 6.1.3 (4/25/06)		
DAY/HR 1-12:00 AM 1-12:10 AM	AP 99.78 99.69	COL 5.438 5.425	02DEBT 0. 0.	MFLOL 1.100 1.089	VENT 5.675 5.673	EXER 0. 0.		
View Output: PO2A as: graph Experiment Con	PCO2A graph trols	PH graph	VENT	BICARI graph	BARO	P +		
Change Variable	Enter N	ew Value	Info on V	Info on Variable		info on: Choose 🛟		
BAROP	480		760 mmHg	760 mmHg		Tips: How Do I?		
Choose 🛟 Run Experiment: for 6D minu	tes at 12H	minute in	ntervals.		View Variable Va Patient Char Choose One	alue: Choose 🛟 ts or Lab tests:		
	Go	Start Ov	ver		Graph Style Normalized	e Size: 600 🛟 , one graph 🛟		

a) To <u>change the barometric pressure</u> (BAROP) from sea level value (760 mmHg) to 12,500 ft. value (480 mmHg).

Under **Change Variable** scroll down to BAROP and enter the new desired value (480).

b) To <u>change the table columns</u> to read out ventilation and blood gas variables.

Under View Output: scroll down in columns 2- through 7- to obtain values for

HUMAN Variable	Physiologic variable		
PO2A	Alveolar partial pressure O2 (mmHg)		
PCO2A	Alveolar partial pressure CO2 (mmHg)		
РН	Arterial blood pH		

VENT	Lung ventilation (Liters/min.)		
BICARB	Plasma bicarbonate (meq./Liter)		
BAROP	Barometric pressure mmHg		

- c) To set up the graph to plot all 6 of these variables (be certain your browser popup blocking is off!)
 - 1) Under View Output as: (upper left, 2nd row)

change each variable to as: **graph** from its default as:**text** (see VENT as an example) (This will result in output both as a Table and as a Graph)

- 2) Under Graph Style (lower right) simply retain the default choices of
 - a normalized plot (values will be shown as change from baseline control values) and
 - <u>one graph</u> (all 6 values will be shown on one single plot)

d) To setup to gather data for 6 days at 12 hour intervals

Under Run Experiment

- for <u>experiment duration</u> type in 6D (default is minutes, D = days, H = hours)
- for printout intervals type in 12H to yield printouts every half day

e) Click on <Go>

- this runs the experiment resulting in a tabular and a graphic output window.

- <u>Click on the Tabular window</u> to bring it to the foreground as shown in the "**Output From Web-HUMAN Physiology Simulation**" below.

3) The output of the high altitude experiment, beginning on Day 1 at 12 a.m. (column #1)

Skidmore Col	ege Output from Web-HUMAI Physiology Simulation			eb-HUMAN	Manual	Ver. 6.1.3 (4/25/06
DAY/HR	AP	COL	02DEBT	MFLOL	VENT	EXER
1-12:00 AM	99.78	5.438	0.	1.100	5.675	0.
1-12:10 AM	99.69	5.425	0.	1.089	5.673	0.
Barometric	Pressure	(760. mmHg)			= 760.00	
Barometric	Pressure	(760. mmHg)			= 480.00	
6.00000	Days	are 8640.0	0 Min	utes		
12.0000	Hours	are 720.00	00 Min	utes		
DAY/HR	PO2A	PC02A	PH	VENT	BICARB	BAROP
1-12:10 AM	97.34	38.27	7.410	5.673	23.69	480.0
1-12:10 PM	64.68	22.67	7.584	6.916	21.87	480.0
2-12:10 AM	61.91	22.15	7.596	6.316	21.45	480.0
2-12:10 PM	61.88	22.67	7.581	6.352	21.25	480.0
3-12:10 AM	62.19	22.26	7.580	6.429	20.96	480.0
3-12:10 PM	62.24	22.24	7.576	6.467	20.70	480.0
4-12:10 AM	62.39	22.19	7.571	6.533	20.45	480.0
4-12:10 PM	62.60	21.99	7.568	6.579	20.19	480.0
5-12:10 AM	62.78	21.80	7.565	6.620	19.92	480.0
5-12:10 PM	62.97	21.59	7.561	6.663	19.65	480.0
6-12:10 AM	63.16	21.40	7.558	6.713	19.36	480.0
6-12:10 PM	63.35	21.38	7.553	6.762	19.06	480.0
7-12:10 AM	63.57	21.20	7.548	6.816	18.75	480.0

shows

- an immediate hypoxia (drop in PO2A-column 2) due to the drop in BAROP.
- an increase in ventilation (VENT-column 5) in an attempt to compensate for the PO2 drop.
- a hypocapnia (PCO2A drops- column 3) due to the hyperventilation
- an increase in pH (column 4) indicating a respiratory alkalosis as a result of the PCO2 drop
- a plasma HCO3- drop, at least initially due to the hypocapnic hyperventilation.

<u>Click on the graph</u> to bring it to the foreground. It appears as shown below.

The graphic output also clearly illustrates each of these trends.

4) Some other possibilities

a) observations in this data- the beginnings of a compensatory kidney-induced acidosis

b) observations by setting up new tables

Use the <<u>List all variables></u> option (see figure 2 above) to track the developing polycythemia, increased hemoglobin, increased red cell production and increased blood viscosity.

c) new variations on the experimental design

- can the high altitude hypoxia be fully relieved by breathing 100% O2 (FO2AT) [fraction of O2

in atmosphere]?

- how compromised is the model's exercise endurance on Mckinley as compared to sea level (adjust EXER and XERMIN, testing in each environment at comparable exercise levels).