The second midterm exam will cover everything we have done from the first midterm exam through the topic of L’Hospital’s Rule (section 4.4 of the text).

Topics:

1. Exponential growth & decay.
2. Related rate problems.
3. Linear approximation and differentials.
4. Maximum and minimum values of a function (both global and local); critical points; extreme value theorem.
5. Mean Value Theorem (MVT).
6. Use of the first and second derivatives in curve sketching; detecting critical points, intervals of increasing and decreasing behavior, concavity, and points of inflection.
7. L’Hospital’s rule for limits of the form “0/0” and “∞/∞”; other indeterminate forms.

Sample Problems:

1. A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour the population has increased to 420. (a) Find an expression for the number of cells in the colony after \(t \) hours. (b) Find the number of bacteria after 3 hours. (c) Find the rate of growth at \(t = 3 \) hours. (d) When will the population reach 10,000 cells?
2. If \(y = x^3 + 2x \) and \(dx/dt = 5 \), find \(dy/dt \) when \(x = 2 \).
3. A spherical balloon is being inflated so that its volume increases at a rate of 2 ft\(^3\)/min. How fast is the radius increasing when the diameter of the balloon is 4 ft across?
4. Find the critical points of the following functions: \(g(t) = |3t - 4| \) and \(h(x) = \frac{x-1}{x^2 + 4} \).
5. Find the global maximum and global minimum values of the function \(f(x) = x - \ln(x) \) on the interval \([1/2, 2]\).
6. Repeat the preceding problem for the function \(g(x) = x\sqrt{4-x^2} \) on the interval \([-1, 2]\).
7. Find the point that the Mean Value Theorem guarantees will exist for the function \(f(x) = \sqrt{x} \) on the interval \([1, 9]\). Draw a picture illustrating the MVT in this case.
8. The graph of the second derivative \(f'' \) of the function \(f \) is shown. What are the \(x \)-coordinates of the points of inflection of \(f \)? On what intervals is \(f \) concave up and concave down? Explain your answers.
9. Let \(f(x) = 2 + 2x^2 - x^4 \). Find (a) the interval(s) on which \(f \) is increasing and decreasing; (b) the local maximum and minimum value(s) of \(f \), and (c) the intervals of concavity and the point(s) of infection.

10. The graph of the first derivative \(g' \) of the function \(g \) is shown. Identify the local extreme points of \(g \), and make a rough sketch of the graph of \(g \), assuming that \(g(0) = -2 \).

11. Evaluate the following limits: (a) \(\lim_{x \to 0} \frac{\sin(4x)}{\tan(5x)} \) (b) \(\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \) (c) \(\lim_{x \to 0} x^{1/x} \)