Problem 1.

\[
\int \frac{\sin \left(\sqrt{x} + 1 \right)}{\sqrt{x}} \, dx
\]

Set \(u = \sqrt{x} + 1 \), \(du = \frac{1}{2\sqrt{x}} \, dx \).

\[-2 \cos \left[1 + \sqrt{x} \right] \]

\[
\int \left(x e^{2x} \right) \, dx
\]

Use integration by parts with \(u = x \), \(dv = e^{2x} \, dx \).

\[e^{2x} \left(-\frac{1}{4} + \frac{x}{2} \right) \]

\[
\int \frac{x}{x^2 + 3x + 2} \, dx
\]

Use integration by partial fractions.

\[-\log(1 + x) + 2 \log(2 + x) \]

\[
\int_{0}^{\pi/2} \frac{\cos t}{\sqrt{3 \sin t + 1}} \, dt
\]

Use substitution \(u = 3 \sin t + 1 \), and update the limits of integration.

\[
\frac{2}{3}
\]

\[
\int \frac{1}{\sqrt{4 + x^2}} \, dx
\]
Use the trig substitution \(x = 2 \tan[t] \), \(dx = 2 \sec^2[t]dt \), to obtain \(\log\left[\frac{\sqrt{4+x^2}}{2} + \frac{x}{2} \right] \), which is the same as ArcSinh[x/2] as reported by Mathematica.

\[
\int \cos[x]^3 \, dx
\]

Split off one copy of \(\cos[x] \) to go with the \(dx \), rewrite the \(\cos^2[x] \) as \(1 - \sin^2[x] \), and set \(u = \sin[x] \), \(du = \cos[x] \, dx \).

\[
\sin[x] - \sin[x]^3/3 + C
\]

\[
\int_1^\infty e^{-2x} \, dx = \lim_{t \to \infty} \int_1^t e^{-2x} \, dx = \lim_{t \to \infty} \left(\frac{1}{2} \left(\frac{1}{e^2 - 1} \right) \right) = \frac{1}{2} e^2
\]

\[
\sum_{n=2}^{\infty} \left(\frac{2}{5} \right)^n
\]

A converging geometric series with \(a = 4/25 \) and \(r = 2/5 \).

\[
\frac{4}{15}
\]

Problem 2.

\[
\int_1^\infty \frac{x}{x^3+10} \, dx
\]

The integrand satisfies the inequality \(\frac{x}{x^3+10} < \frac{x}{x^2} = \frac{1}{x} \) for \(x \geq 1 \), so we know the improper integral converges by comparison to the known converging integral \(\int_1^\infty \frac{1}{x^2} \, dx \).

We can make our tail less than a given amount by making the corresponding tail of the "test function" that small. So, to find \(d \) as requested, we compute

\[
\int_d^\infty \frac{1}{x^2} \, dx = \frac{1}{d}
\]

and solve the inequality \(\frac{1}{d} < .001 \), to obtain \(d > 1000 \). Any value of \(d \) larger than 1000 will do.

Let's test this:
\[\ln[2] = N\left[\int_{1001}^{\infty} \left(\frac{x}{x^3 + 10} \right) \, dx, 10 \right] \]

\[\text{Out}[2] = 0.0009990009965 \]

We see that this "tail" is less than .001.

Problem 3.

The slices of the x-axis volume are disks of radius \(e^x \). The slices of the y-axis volume are disks of radius 1 between \(y = 0 \) and \(y = 1 \), and are washers of inner radius \(\ln[y] \) and outer radius 1 for \(1 \leq y \leq e \). (The y-axis volume is easier to compute using the "shell method.")

\[
\text{xAxisVolume} = \pi \int_{0}^{1} e^{2x} \, dx \\
\left(- \frac{1}{2} + \frac{e^2}{2} \right) \pi \\
\text{yAxisVolume} = \pi + \pi \int_{1}^{e} (1^2 - \ln[y]^2) \, dy \\
2 \pi
\]

Problem 4.

If \(f[x] = \frac{3}{x} \), then \(f'[x] = -\frac{3}{x^2} \). The length of the graph of \(f \) on the interval \([1,3]\) is therefore

\[
\int_{1}^{3} \sqrt{1 + f'[x]^2} \, dx = \\
\int_{1}^{3} \sqrt{1 + \frac{9}{x^4}} \, dx
\]

The length can be estimated by adding up the distances between the points \((1,3), (2, \frac{3}{2})\), and \((3,1)\):

\[
\text{approxArcLength} = N \left[\sqrt{(2 - 1)^2 + \left(\frac{3}{2} - 3 \right)^2} + \sqrt{(3 - 2)^2 + \left(1 - \frac{3}{2} \right)^2} \right] \\
2.92081
\]

The Right Riemann Sum \(R_2 \) for the arc length integral is \((\Delta x = 1, \text{and the right endpoints of the two subintervals are } x = 2 \text{ and } x = 3)\):

\[
N \left[\frac{(3 - 1)}{2} \left(\sqrt{1 + \frac{9}{(2)^4}} + \sqrt{1 + \frac{9}{3^4}} \right) \right] \\
2.30409
\]
The Right Riemann Sum gives an underestimate of the arc length (as does the polygonal approximation), since the integrand is decreasing. The exact value of the arc length is

\[
\ln[4]=
\int_{1}^{3} \sqrt{1 + \frac{9}{x^4}} \, dx, 10
\]

Out[4]: 2.955334906

Problem 5.

The problem is to find the number of subintervals needed to estimate the value of the (easy) integral \(\int_{0}^{2} (4 - x^2) \, dx \) to within .001 using the Midpoint method. The error bound for the Midpoint method is given by \(\frac{K_2(b-a)^2}{24n^2} \). Now the second derivative of the integrand is the constant -2, so \(K_2 = 2 \). We must solve the inequality \(\frac{2(2-a)^2}{24n^2} < .001 \), or \(n^2 > \frac{16000}{24} \), or \(n > \sqrt{\frac{16000}{24}} = 25.8199 \). Therefore \(n = 26 \) will do.

Problem 6.

\[1/3, 2/5, 3/7, 4/9, 5/11, \ldots, n/(2n+1), \ldots\]
\[1, -1/2, 1/6, -1/24, 1/120, \ldots, (-1)^{n+1} / n!, \ldots\]

Problem 7.

\{2 - 1/n\} converges monotonically to 2: 1, 3/2, 5/3, 7/4, ...
-1, -2, -3, -4, -5, ... or -1, -4, -9, -16, -25, ... diverge to -\(\infty\)
\[\sum_{k=1}^{\infty} \frac{1}{(k/3)^3} \] is a diverging p-series.
\[\sum_{k=1}^{\infty} \left(-\frac{1}{3}\right)^k \] is a converging alternating geometric series.

Problem 8.

a. diverges by comparison to diverging p-series with \(p = 2/3 \).
b. converges (use the ratio test).
c. diverges (the \(n \)th term tends to \(\infty \) as \(n \to \infty \)).
d. converges by the alternating series test.
Problem 9.

The given power series is geometric, with common ratio given by \(\frac{r}{2} \). The series will converge for all x such that \(|\frac{r}{2}| < 1 \), that is, \(|x-2| < 2 \). In other words, the series converges for all x that lie less than 2 units from the center 2, which yields the open interval \((0, 4)\).

Problem 10.

The slope \(y' \) is twice the y-coordinate, so the curve is a solution of the DE \(y' = 2y \), which has solutions of the form \(y = A \cdot e^{2 \cdot t} \). If \(y = 5 \) when \(x = 0 \), the constant A must be 5. If the slope is twice the x-coordinate, then we have the DE \(y' = 2x \), or \(y = x^2 + C \) with \(C = 5 \) to satisfy the initial condition.

Problem 11.

The number of bacteria at time \(t \) is given by \(P(t) = P_0 \cdot e^{kt} \), where \(t \) is in hours. We are given that \(P(2) = 600 \) and \(P(8) = 75000 \).

Therefore \(\frac{P(8)}{P(2)} = \frac{P_0 \cdot e^{8k}}{P_0 \cdot e^{2k}} = \frac{75000}{600} = 125 \Rightarrow e^{6k} = 125 \Rightarrow k = \frac{\ln(125)}{6} = .804719 \). Solving for \(P_0 \) in \(P(2) = 600 = P_0 \cdot e^{0.804719 \cdot 2} \Rightarrow P_0 = \frac{600}{e^{1.619438}} = 120 \). Therefore, \(P(t) = 120 \cdot e^{0.804719 \cdot t} \). The population at 5 hours is \(P(5) = 6708 \). The growth rate at 5 hours is \(P'(t) = 120k \cdot e^{kt} = 5398 \) bacteria/hour. To find when the population will reach 200,000 bacteria, we solve the equation \(P(t) = 200000 \) for \(t \). The answer is: \(t = 9.21885 \) hours.

Problem 12.

The slope at a point on the parametric curve \((x(t), y(t)) \) is given by \(\frac{y'(t)}{x'(t)} \). In this case, the slope is \(\frac{\frac{3t^2-12}{2t}}{t} \). The slope is horizontal when the numerator is zero and the denominator isn't 0; these values are \(t = \pm 2 \), corresponding to the points \((6, -16)\) and \((6, 16)\). The slope is vertical when the denominator is 0 and the numerator isn't; the only such point is \(t = 0 \), corresponding to the point \((10, 0)\). Here is (a portion of) the curve:

\[
\text{pcurve} = \text{ParametricPlot}\left[\{10 - t^2, t^3 - 12 t\}, \{t, -3, 3\}\right]
\]

The slope at \(t = -1 \) is \(-\frac{9}{2} \), and the point is \((9, 11)\), so an equation of the line is \(y - 11 = -\frac{9}{2} (x - 9) \).

\[
\text{lplot} = \text{Plot}\left[11 - \frac{9}{2} (x - 9), \{x, 6, 12\}\right]
\]
Problem 13.

To find the radius of convergence of a power series, one uses the ratio test to check where the series converges absolutely. Then, once the radius of convergence \(R \) is known, one needs to check the endpoints \(c-R, c+R \) (where \(c \) is the center of the power series) separately for convergence.

a. center = 1, \(R = 4 \), series converges at \(x = -3 \), diverges at \(x = 5 \), so the interval of convergence is \([-3, 5)\).
b. center = 1, \(R = 1 \), interval of convergence \([0, 2)\).
c. center = -5, \(R = 1 \), interval of convergence \([-6, -4]\).
d. center = 1, \(R = \frac{1}{2} \), interval of convergence \([1/2, 3/2)\).

Here are the details for part a. Given a value of \(x \), we need to test the series for absolute convergence. So we compute

\[
\lim_{k \to \infty} \left(\frac{a_{k+1}}{a_k} \right) = \lim_{k \to \infty} \left(\left| \frac{x-1}{x+1} \cdot \left(\frac{1}{4} \right)^k \right| \right) = \lim_{k \to \infty} \left(\frac{|x-1| \cdot \left(\frac{1}{4} \right)^k}{|x+1|} \right).
\]

We know the series converges absolutely if the preceding limit is < 1; therefore, we see that the series converges absolutely provided that \(|x-1| < 4 \), so the radius of convergence \(R = 4 \). So we have absolute convergence on the interval \((-3, 5)\). One then tests the endpoints separately for convergence. In this case, one sees that we have an alternating harmonic series when \(x = -3 \) and a harmonic series when \(x = 5 \), so we have convergence at -3 and divergence at 5, as reported above.