Midterm Review 1 Solutions

1. Evaluate the following integrals

\[
\int_1^2 \left(\frac{y + 5}{y^3} \right) dy = \int_1^2 \frac{1}{y^2} dy + \int_1^2 \frac{5}{y} dy
\]

\[
\int_{-1}^{-1} (x - \sqrt{2 \cdot \text{Abs}[x]}) \, dx
\]

\[
y = x - 2|x|
\]

\[
\int_0^1 \left(x \left(\sqrt{x} + \sqrt{-x} \right) \right) \, dx = \int_0^1 x^{4/3} \, dx + \int_0^1 x^{5/4} \, dx
\]

2. Evaluate using an appropriate substitution

\[
\int \left(t^2 \cos \left(t^3 + 2 \right) \right) \, dt
\]

Let \(u = t^3 + 2, \, du = 3t^2 \, dt \). The integral becomes \(\frac{1}{3} \int \cos(u) \, du = \frac{1}{3} \sin(u) + C = \frac{1}{3} \sin(x^3 + 2) + C \).
Let \(u = 3 + x, \) \(du = dx. \) \(u \) varies from \(1 + 3 = 4 \) to \(6 + 3 = 9. \) So the integral becomes \(\int_{u=4}^{9} u^{-1/2} \, du = 2 u^{1/2} \Big|_4^9 = 2 \cdot 3 - 2 \cdot 2 = 2. \)

Let \(u = e^x, \) \(du = e^x \, dx. \) Then the integral becomes \(\int \frac{1}{1 + e^x} \, du = \arctan(u) + C = \arctan(e^x) + C. \)

- **3. Find the area of the region...**

 \[
 \text{Plot}[[x^2, 2 x - 1], \{x, 0, 2\}]
 \]

 The region in question lies beneath \(y = x^2 \) and above the \(x \)-axis for \(0 \leq x \leq 1/2, \) and then above the tangent line \(y = 2x - 1 \) for \(0 \leq x \leq 1. \) The area is then

 \[
 \text{In}[108]=
 \int_0^{1/2} x^2 \, dx + \int_{1/2}^1 (x^2 - (2 x - 1)) \, dx
 \]

 \[
 \text{Out}[108]=
 \frac{1}{12}
 \]

- **4. Find the volume in two ways...**

 \[
 \text{Plot}[[\sqrt{x - 1}, \{x, -5, 5\}]
 \]
The region beneath the curve above the interval \([1, 5]\) is rotated about the \(y\)-axis. We want to find the volume in two ways.

Disk method (or "washer" method). The outer radius of the disks is 5, and the inner radius of the disks is obtained by solving \(y = \sqrt{x-1}\) for \(x: x = y^2 + 1\). The volume of the washer is \((\text{area}) \cdot (\text{thickness}) = \pi \left(5^2 - (y^2 + 1)^2 \right) \, dy\), and the washers lie between \(y = 0\) and \(y = 2\). Therefore the volume is

\[
\int_0^2 \left(\pi \left(25 - (y^2 + 1)^2 \right) \right) \, dy
\]

\[
\frac{544 \pi}{15}
\]

Shell method. The volume of the shells is given by \((\text{circumference}) \cdot (\text{height}) \cdot (\text{thickness}) = (2 \pi x) \left(\sqrt{x-1} \right) \, dx\), and we must add these up as the radius \(x\) ranges from 1 to 5. Therefore the volume is

\[
\int_1^5 \left(2 \pi x \sqrt{x-1} \right) \, dx
\]

\[
\frac{544 \pi}{15}
\]

5. Describe a solid whose volume is equal to \(\int_0^1 (2 \pi (3 - y) (1 - y^2)) \, dy\).

The most likely interpretation of the integral is as a shell-method calculation, with the radius of the shell being \(3 - y\), the height being \(1 - y^2\), and the thickness being \(dy\). Since the thickness is \(dy\) this means that we are rotating our region about a horizontal axis (namely the horizontal line \(y = 3\)). The region we are rotating is bounded by the curve \(x = 1 - y^2\), or \(y = \sqrt{1-x}\), \(0 \leq x \leq 1\). The volume is then the ring obtained by rotating the region beneath the curve and above the \(x\)-axis, \(0 \leq x \leq 1\), about the line \(y = 3\).

```math
\text{Plot}\left[\left\{3, \sqrt{1-x}\right\}, \{x, 0, 1\}, \text{PlotRange \to \{-1, 6\}}\right]
```
6. Find the avg. value of \(f(t) = t \sin(t^2) \) on \([0, 10]\).

\[
\frac{1}{10 - 0} \int_0^{10} (t \sin(t^2)) \, dt
\]

0.00688406

The integral can be worked by hand using the substitution \(u = t^2 \).

7. The arc length of \(y = \sin(x^2) \) on \([0, \pi]\).

The arc length of the curve \(y = f(x) \) on \([a, b]\) is given by \(\int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx \). In our case, this formula yields an integral that Mathematica can't handle exactly.

\[
\int_{0}^{\pi} \sqrt{1 + (2x \cos(x^2))^2} \, dx
\]

\[
\int_{0}^{\pi} \sqrt{1 + 4x^2 \cos(x^2)^2} \, dx
\]

8. Some integration by parts examples

\[\int_{0}^{1} \frac{y}{e^{y^2}} \, dy \]

\[
\int_{0}^{1} \frac{y}{e^{y^2}} \, dy
\]

\[
\frac{1}{4} - \frac{3}{4e^2}
\]

\[
N\left[\frac{1}{4} - \frac{3}{4e^2} \right]
\]

0.148499

To do this integral by parts, write it as \(\int (ye^{-2y}) \, dy \) and "lower the power of \(y \)’: Let \(u = y, \, \, du = dy, \, \, dv = e^{-2y} \, dy, \, \, v = -\frac{1}{2} e^{-2y} \). Therefore,

\[
\int (ye^{-2y}) \, dy = y(-\frac{1}{2} e^{-2y}) - \int -\frac{1}{2} e^{-2y} \, dy, \, \, \text{etc...}
\]

\[\int_{1}^{2} \left(x^4 \, (\log[x])^2 \right) \, dx \]

\[
\int_{1}^{2} \left(x^4 \, (\log[x])^2 \right) \, dx
\]

\[
\frac{2}{125} \left(31 - 160 \log[2] + 400 \log[2]^2 \right)
\]
Here the best strategy is to let \(u = (\ln(x))^2 \), \(du = 2 \frac{\ln(x)}{x} \) \(dx \), \(dv = x^4 \) \(dx \), \(v = \frac{x^5}{5} \). The integration by parts formula then yields \(u \cdot v - \int v \cdot du = (\ln(x))^2 \cdot \frac{x^5}{5} - \int \frac{x^4}{5} \cdot (2 \frac{\ln(x)}{x}) \) \(dx \). Therefore, our answer (for the antiderivative) is equal to \((\ln(x))^2 \cdot \frac{x^5}{5} - \frac{2}{5} \int x^4 \cdot \ln(x) \) \(dx \).

We can now tackle the remaining integral using integration by parts, with \(u = \ln(x) \), \(du = (dx/x) \), \(dv = x^4 \) \(dx \), \(v = \frac{x^5}{5} \). Therefore our final answer (before plugging in the limits) is
\[
(\ln(x))^2 \cdot \frac{x^5}{5} - \frac{2}{5} \left[(\ln(x)) \cdot \frac{x^5}{5} - \frac{1}{5} \int x^4 \right] \cdot \ln(x) \) \(dx \) =
\[
(\ln(x))^2 \cdot \frac{x^5}{5} - \frac{2}{25} \ln(x) \cdot x^5 + \frac{2}{125} x^5.\]

Plugging in the limits and simplifying, one obtains the final numerical answer shown above.

\[\int \sin(\sqrt{x}) \) \(dx \]
\[
\int \sin \left[\sqrt{x}\right] \) \(dx \]
\[
-2 \sqrt{x} \cos \left[\sqrt{x}\right] + 2 \sin \left[\sqrt{x}\right]
\]

Here the trick is to let \(u = \sqrt{x} \) (or \(x = u^2 \), \(du = \frac{dx}{2 \sqrt{x}} \), or \(dx = 2u \) \(du \). Therefore, the integral becomes \(2 \int \sin(u) \cdot u \) \(du \). At this point, an easy integration by parts, with \(w = u \), \(dv = \sin(u) \) \(du \), \(dw = du \), \(v = -\cos(u) \), yields the answer shown above, after replacing \(u \) by \(\sqrt{x} \).

\section{9. Evaluate} \(\int_{0}^{\pi/3} \tan^5(x) \sec^5(x) \) \(dx \)

The trick here is to split off a \(\sec^2(x) \) and rewrite the rest in terms of the tangent. We get \(\int_{0}^{\pi/3} \tan^5(x) \sec^4(x) \) \((\sec^2(x) \) \(dx \) =
\[
\int_{0}^{\pi/3} \tan^5(x) \left(\tan^2(x) + 1\right) \) \(\sec^2(x) \) \(dx \).\] Now we let \(u = \tan(x) \), \(du = \sec^2(x) \) \(dx \), and the \(u \)-limits run from 0 to \(\sqrt{3} \). Therefore the answer is given by the following "elementary" integral.
\[
\int_{0}^{\sqrt{3}} \left(u^5 \left(u^2 + 1 \right) \right) \) \(du \]
\[
\frac{981}{20} \]
\[
N[\frac{981}{20}] \]
\[
49.05 \]