Simplified Settings for Discrete Logarithms in Small Characteristic Finite Fields

Antoine Joux

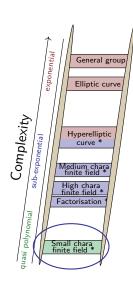
CryptoExperts, Fondation UPMC, LIP6/Almasty

Joint work with Cécile Pierrot

July 17th (Fq12, Skidmore College)

The Discrete Logarithm Problem (DLP)

- Multiplicative group G generated by g: solving the discrete logarithm problem in G, is inverting the map x → g^x
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:
- Two algorithmic approaches:
 - Generic algorithms (Pollard's Rho, Pohlig-Hellman...)
 - Specific algorithms (Index Calculus *)



Generic algorithms: Pohlig-Hellman

- ullet Given a multiplicative group G with generator g
- Given $|G| = \prod_{i=1}^k p_i^{e_i}$
- To compute dlogs in *G*, it suffices to compute dlogs in:

$$G_i = \langle g^{|G|/p_i} \rangle$$
 (Group of order p_i)

Generic algorithms: |G| = p

• There exist algorithms with complexity $O(\sqrt{p})$ to solve:

$$y = g^n$$

- Baby-step giant-step (let $R = \lceil \sqrt{p} \rceil$):
 - Create list $v, v/g, \dots, v/g^{R-1}$
 - Create list $1, h, h^2, \dots, h^{R-1}$, where $h = g^R$
 - Find collision
- Can be improved to memoryless algorithms using cycle finding techniques

Index Calculus Algorithms

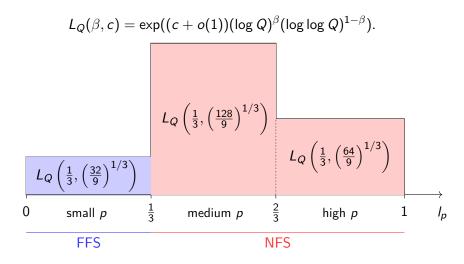
To compute Discrete Logs in *G*:

- Collection of Relations
 - ightarrow Create a lot of sparse multiplicative relations between some (small) specific elements = the factor base

$$\prod g_i^{e_i} = \prod g_i^{e_i'} \quad \Rightarrow \quad \sum (e_i - e_i') \log(g_i) = 0$$

- \rightarrow So a lot of sparse linear equations
- 2 Linear Algebra
 - \rightarrow Recover the Discrete Logs of the factor base
- Extension Phase (for small characteristic finite fields)
 - ightarrow Recover the Discrete Logs of the extended factor base
- Individual Logarithm Phase
 - → Recover the Discrete Log of an arbitrary element

Complexity of Index calculus algorithms (before 2013)



Index Calculus for Small Characteristic Finite Fields

- $G = \mathbb{F}_{p^n}$ where p is small compared to n.
- Asymptotic Complexities:

```
\left. \begin{array}{c} \text{Collection of Relations} \\ \text{Linear Algebra} \\ \text{Extension Phase} \end{array} \right\} \begin{array}{c} \text{Polynomial time} \\ \end{array}
```

Individual Logarithm Phase $\left. \right\}$ Quasipolynomial time

- In practice:
 Linear algebra and extension phase dominate.
- In this talk:
 Simplified description of algorithms + additional ideas
 ⇒ Improve the complexity of the polynomial phases.

Frobenius Representation Algorithms

- Our goal: solve the DLP in \mathbb{F}_{p^n} with small characteristic.
- How ? Represent \mathbb{F}_{p^n} as

 $\mathbb{F}_{p^{m,k}} = \mathbb{F}_{(p^m)^k} = \mathbb{F}_{q^k} \simeq \mathbb{F}_q[X]/(I(X))$ where I(X) is an irreducible polynomial of degree k such that:

$$I(X)|h_1(X)X^q - h_0(X)$$
 or $I(X)|h_1(X^q)X - h_0(X^q)$

where h_0 and h_1 are polynomials of low degrees.

• Why? To have two equations in the finite field:

$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X \qquad \text{and} \qquad \underbrace{X^q = \frac{h_0(X)}{h_1(X)}}_{\text{Frobenius Representation}} \quad \text{or} \quad \underbrace{X = \frac{h_0(X^q)}{h_1(X^q)}}_{\text{Dual Frob. Rep.}}$$

- What choice do we have ? Degree of h_0 and h_1 .
- Simplest choice: To take

 $h_0: \deg 1 \text{ polynomial}$ or $h_0: \deg 2 \text{ polynomial}$ $h_1: \deg 2 \text{ polynomial}$ $h_1: \deg 1 \text{ polynomial}$ useful variant

 \mathbb{F}_{a^k}

Creation of Relations

Our goal: multiplicative relation between small degree polynomials.

Main idea : start from
$$\prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X$$
 (**).

Let A and B be 2 small polynomials in $\mathbb{F}_q[X]$ (i.e. of degree $\leq D$).

$$B(X)\prod_{\alpha\in\mathbb{F}_q}(A(X)-\alpha B(X)) = \underset{\text{thanks to (**)}}{=} A(X)^q B(X) - A(X)B(X)^q$$

$$= \underset{\text{Frob. linearity}}{=} A(X)^q B(X) - A(X)B(X)^q$$

$$A(X)^q B(X) - A(X)^q$$

$$A(X)^q B(X) -$$

We finally get:

$$\underbrace{h_1(X)^D B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X))}_{\text{Product of small polynomials } !!} = [A, B]_D(X)$$

Properties and simplification of $[A, B]_D(X)$

- $[A, B]_D$ is bilinear
- $[A, A]_D = 0.$
- Thus, A and B can be assumed monic.
- Since $[A, B]_D = [A, B A]_D$, we may also assume deg $B < \deg A$.
- Assume deg A = D and deg B = D 1. Then, using bilinearity, one may reduce the coefficient of X^{D-1} in A to 0.
- In the sequel, we assume:

$$A(X) = X^{D} + A_{D-2}(X)$$
 and $B(X) = X^{D-1} + B_{D-2}(X)$.

A Small Factor Base

We have:
$$\underbrace{h_1(X)^D B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X))}_{\text{polynomials of degree } \leqslant D} = [A, B]_D(X)$$

- A natural Factor Base: Irreducible poly in $\mathbb{F}_q[X]$ of deg $\leqslant D$.
- $D \searrow \Rightarrow$ size of the factor base $\searrow \Rightarrow$ complexity of Linear Algebra \searrow . The smaller, the better.
- What is simple ? Irreducible poly in $\mathbb{F}_q[X]$ of degree ≤ 2 .
- Yet, lowering D rises 2 problems:
 - Need to generate enough good equations = equations where $[A,B]_2$ splits in terms of degree ≤ 2 . Pb: the probability \mathcal{P} to have good equations is too small w.r.t the number of equations required (need $\mathcal{P} > 1/2$).
 - Need to be able to descend large polynomials to degree 2 ones.

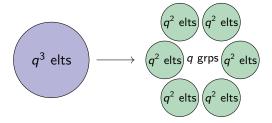
A Small Factor Base: Systematic factors of $[A, B]_D$

- ullet First goal, solving pb 1: i.e. improve the probability \mathcal{P} .
- How ? $[A, B]_2$ is a degree 6 polynomial. The prob that it factors into degree 2 polynomials is too low. Yet, $[A, B]_D$ has a systematic factor of degree 3! Namely $X h_1(X) - h_0(X)$.
- A degree 3 polynomial factors into terms of degree at most 2 with prob $\mathcal{P} > 2/3 > 1/2$.

 \Rightarrow Linear Algebra permits to recover the DLogs of the factor base in $O((\underbrace{\# \text{ factor base}}_{q^2})^2(\underbrace{\# \text{ of entries}}_q)) \approx O(q^5)$ operations.

Second goal: Solving pb 2 i.e. extend the factor base to degree 3 BUT without performing linear algebra on a matrix of dim q^3 .

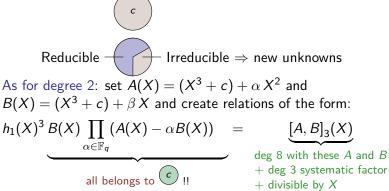
Divide the deg. 3 monic polynomials into groups.



What is simple? To consider that 2 polynomials belongs to the same group if they have the same constant coefficient.

② Given q^2 , generate equations involving only poly in q^2 and degree 1 and 2 polynomials (whose logs are already known).

• An example: let $c = \{(X^3 + c) + \alpha X^2 + \beta X | (\alpha, \beta) \in \mathbb{F}_q^2\}.$



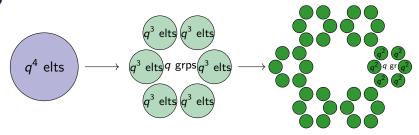
Prob that $[A, B]_3$ factors into deg $\leq 2 \Rightarrow 41\%$. Enough!

• Complexity to recover the Dlogs of all degree 3 polynomials:

$$O((\# {}^{c}))(\# \text{ factor base})^{2}(\# \text{ of entries})) \approx O(q^{6}) \text{ ops.}$$

Third goal: extend the factor base to degree 4

by performing smaller linear algebra steps.



What is simple? To consider that:

2 poly belongs to the same (q^3) if same constant coefficient.

AND 2 poly belongs to the same \mathfrak{G} if same coeff before X.

② Given ④, generate equations involving only poly in it and degree 1, 2 and 3 polynomials.

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_4$.
- Complexity of DLogs computation of ONE (q³):

$$O((\underbrace{\# \stackrel{q^3}{\text{in}} \stackrel{q^3}{\text{ops.}}}) \cdot (\underbrace{\# \stackrel{q^3}{\text{ops.}}})^2 \underbrace{(\#\text{entries})}) = O(q^6) \text{ ops.}$$

- ullet Final complexity dominated by the first ${\color{red} (q^3)}$ computation:
 - Unknown
 - Reducible
 - Bili. desc.
 - $4 \rightarrow 3$ Bili. desc.

 \Rightarrow Final complexity of extension to deg 4 in $O(q^6)$ operations.

Main Result

Final asymptotic complexity of the three first phases:

 $O(q^6)$ operations – to be compared with previous $O(q^7)$.

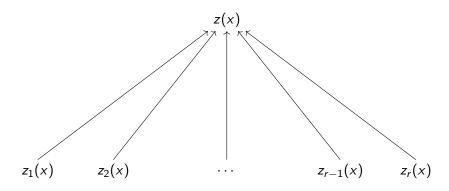
Individual Logarithms (Descent strategies)

- Continued fractions (high degrees)
- Classical descent (for high to mid degrees, need subfield)
- Bilinear descent (for mid to low degrees)
- Quasi-polynomial descent (all degrees)
- ZigZag descent (all even degrees)

General principle

• Given target z(x) in finite field, write:

$$z(x) = \prod_i z_i(x)^{e_i}$$
, with smaller z_i s



Classical descent

- Need two variables x and y
- If $q = p^{\ell}$, let:

$$y = x^{p^{\ell_1}}$$
 then $y^{p^{\ell_2}} = x^{p^{\ell}} = \frac{h_0(x)}{h_1(x)}.$

• Let F(x, y) be a (low degree) bivariate polynomial in $\mathbb{F}_q[x, y]$, then:

$$F(x, x^{p^{\ell_1}})^{p^{\ell_2}} = F(x^{p^{\ell_2}}, h_0(x)/h_1(x))$$
 in \mathbb{F}_{q^k} .

- Force z(x) as divisor of $F(x, x^{p^{\ell_1}})$ or $F(x^{p^{\ell_2}}, h_0(x)/h_1(x))$ (linear algebra)
- Low arity in descent but can't go very low

Modern descent strategies

• Remember basic Equation:

$$h_1(X)^D B(X) \prod_{\alpha \in \mathbb{F}_q} (A(X) - \alpha B(X)) = [A, B]_D(X)$$

- Make z(x) appear on the right or left
 - On the right: bilinear descent
 - On the left: quasi-polynomial
 - On the right (powers of two): ZigZag descent [GKZ14]

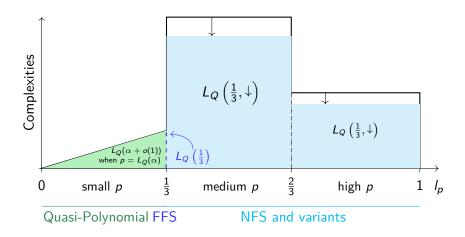
Descent Tree

- Continued fractions, at most one application
- Classical descent, many levels possible
- Bilinear descent (or [GKZ14]), in practice 4-5 levels max.
- Quasi-polynomial descent in practice 2 levels max.

Practical application

- Record in characteristic 3 on $\mathbb{F}_{3^{5\cdot 479}}$, a finite field of cardinality a 3796-bit integer.
 - Not a special extension field such as Kummer extension !
 - Make use of the Dual Frobenius Representation combined with the useful variant (both not presented here).
- To be compared with previous record in characteristic 3 by Adj, Menezes, Oliveira and Rodriguez-Henriquez on a 1551-bit finite field.
- ullet Time : 8600 CPU-hours pprox 1 CPU-year

Complexities of Index Calculus Algorithms



exponential General group Elliptic curve Complexity Hyperelliptic curve * sub-exponential Medium chara finite field * High chara finite field * Factorisation * quasi polynomial Small chara finite field *

Questions?