Special Monomial Maps: Examples, Classification, Open Problems

Gohar Kyureghyan
Otto-von-Guericke University of Magdeburg, Germany

```
Fq12 - Saratoga
    July 14, 2015
```


Outline

- Special maps yielding small Kakeya sets
- Non-linear monomial maps

Kakeya Sets

A subset \mathcal{K} of $\mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}$ is called a Kakeya set if it contains a line in every direction.

Let $\alpha \in \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}, \alpha \neq 0$. Then a line in direction α is just

$$
\left\{\alpha \cdot t+\beta \mid t \in \mathbb{F}_{\boldsymbol{q}}\right\}
$$

where $\beta \in \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}$ is arbitrary.

Goal: Constructions for small Kakeya sets.

Kakeya Sets

A subset $\mathcal{K} \subseteq \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{q}}$ is a Kakeya set if for every non-zero $\alpha \in \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}$ there is a $\beta_{\alpha} \in \mathbb{F}_{q}^{\boldsymbol{n}}$ such that the line

$$
\left\{\alpha \cdot t+\beta_{\alpha} \mid t \in \mathbb{F}_{\boldsymbol{q}}\right\}
$$

is contained in \mathcal{K}.

Suppose we know the map $\alpha \mapsto \beta_{\alpha}$, then the set

$$
\bigcup_{\alpha}\left\{\alpha \cdot t+\beta_{\alpha} \mid t \in \mathbb{F}_{\boldsymbol{q}}\right\}
$$

is a Kakeya set.

Hence, constructing a small Kakeya set is equivalent to finding a map $\alpha \mapsto \beta_{\alpha}$ such that the above union is small.

Kakeya Sets: A Construction

Problem: Find a map $\alpha \mapsto \beta_{\alpha}$ such that the union

$$
\bigcup_{\alpha}\left\{\alpha \cdot t+\beta_{\alpha} \mid t \in \mathbb{F}_{\boldsymbol{q}}\right\}
$$

is small.

Construction: [Kopparty-Lev-Saraf-Sudan (2011)]:
Let w.I.g. $\alpha=\left(a_{1}, a_{2}, \ldots, a_{j-1}, 1,0, \ldots, 0\right)$ for some $1 \leq j \leq n$ and take

$$
\beta_{\alpha}:=\left(f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{j-1}\right), 0,0, \ldots, 0\right)
$$

for some fixed map $f: \mathbb{F}_{\boldsymbol{q}} \rightarrow \mathbb{F}_{\boldsymbol{q}}$.

Kakeya Sets: A Construction

Then the line defined by $\alpha=\left(a_{1}, a_{2}, \ldots, a_{j-1}, 1,0, \ldots, 0\right)$ is

$$
\mathcal{L}_{\alpha}:=\left\{\left(a_{1} \cdot t+f\left(a_{1}\right), \ldots, a_{j-1} \cdot t+f\left(a_{j-1}\right), t, 0, \ldots, 0\right) \mid t \in \mathbb{F}_{\boldsymbol{q}}\right\}
$$

and the corresponding Kakeya set is

$$
\mathcal{K}=\bigcup_{\alpha} \mathcal{L}_{\alpha}
$$

Note that

$$
\mathcal{K}=\left\{\left(y_{1}, \ldots, y_{j-1}, t, 0, \ldots, 0\right) \mid 1 \leq j \leq n, t \in \mathbb{F}_{\boldsymbol{q}}, y_{i} \in \operatorname{Im}_{f}(t)\right\}
$$

with

$$
\operatorname{Im}_{f}(t):=\left\{f(x)+t \cdot x \mid x \in \mathbb{F}_{\boldsymbol{q}}\right\}
$$

Hence, to minimize $|\mathcal{K}|$ we need to find a map $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ with $\left|\operatorname{Im}_{f}(t)\right|$ small for all $t \in \mathbb{F}_{\boldsymbol{q}}$.

Searching for good maps $f: \mathbb{F}_{\boldsymbol{q}} \rightarrow \mathbb{F}_{\boldsymbol{q}} \boldsymbol{?}$

Result [Kopparty-Lev-Saraf-Sudan (2011)]:

(a) For every q and $f: \mathbb{F}_{\boldsymbol{q}} \rightarrow \mathbb{F}_{\boldsymbol{q}}$, there is an element $t \in \mathbb{F}_{\boldsymbol{q}}$ with

$$
\left|\operatorname{Im}_{f}(t)\right|=\left|\left\{f(x)+t \cdot x \mid x \in \mathbb{F}_{\boldsymbol{q}}\right\}\right|>\frac{q}{2}
$$

(b) If q is odd, then the map $s: \mathbb{F}_{\boldsymbol{q}} \rightarrow \mathbb{F}_{\boldsymbol{q}}$ with $x \mapsto x^{2}$ satisfies

$$
\left|\operatorname{Im}_{s}(t)\right|=\left|\left\{x^{2}+t \cdot x \mid x \in \mathbb{F}_{\boldsymbol{q}}\right\}\right|=\frac{q+1}{2}
$$

Hence s defines an (asymptotically) optimal Kakeya set (when the presented construction is used).

Searching for good maps for even q

Which maps $f: \mathbb{F}_{\boldsymbol{q}} \rightarrow \mathbb{F}_{\boldsymbol{q}}$ are optimal when q is even ? (Open)

It is worth to try to understand at first monomial maps $f(x)=x^{k}$, since

- a best solution for q odd is a monomial map; and
- they are easier to handle: Not all t must be checked: If there is $a \in \mathbb{F}_{\boldsymbol{q}}$, such that $t=a^{k-1}$, then

$$
x^{k}+t x=a^{k} \cdot\left((x / a)^{k}+(x / a)\right) .
$$

The best known maps for even q

Let $q=2^{m}$. The best known choice for the map $f: \mathbb{F}_{\boldsymbol{q}} \rightarrow \mathbb{F}_{\boldsymbol{q}}$ is

- $f(x)=x^{2^{m / 2}+1}$, when m is even
- $f(x)=x^{4}+x^{3}$, when m is odd.

Open question: Let q be even. What is the best choice for f ? What is the best choice for monomial f ?

A proof from the BOOK

Theorem: Let $q=2^{m}$ with m even. Then

$$
\left|\left\{x^{2^{m / 2}+1}: x \in \mathbb{F}_{\boldsymbol{q}}\right\}\right|=2^{m / 2}
$$

and for any non-zero $t \in \mathbb{F}_{\boldsymbol{q}}$

$$
\left|\left\{x^{2^{m / 2}+1}+t x: x \in \mathbb{F}_{\boldsymbol{q}}\right\}\right|=\frac{2^{m}+2^{m / 2}}{2}
$$

Proof [Peter Müller]: It is enough to compute the size of the image set of

$$
g(x):=x^{2^{m / 2}+1}+x
$$

that is to consider only $t=1$.

A proof from the BOOK

The goal is to compute the image set of $g(x):=x^{2^{m / 2}+1}+x$.
Note, if $y, z \in \mathbb{F}_{\boldsymbol{q}}$ are such that

$$
g(z)=z^{2^{m / 2}+1}+z=y^{2^{m / 2}+1}+y=g(y)
$$

then $z=y+u$ for some $u \in \mathbb{F}_{2^{m / 2}}$.
So, let $u \in \mathbb{F}_{2^{m / 2}}$. Then

$$
\begin{aligned}
g(y+u) & =y^{2^{m / 2}+1}+y+u\left(y^{2^{m / 2}}+y\right)+u^{2}+u \\
& =g(y)+u\left(y^{2^{m / 2}}+y\right)+u^{2}+u \\
& =g(y)+u(\operatorname{Tr}(y)+u+1)
\end{aligned}
$$

Thus y and $y+u, u \neq 0$, have the same image if and only if

$$
u=\operatorname{Tr}(y)+1
$$

The implied bounds for Kakeya sets

Theorem[Kopparty-Lev-Saraf-Sudan (2011); K.-Müller-Wang (2014)]:

Let $n \geq 1$. There is a Kakeya set $\mathcal{K} \subset \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}$ such that

$$
|K|< \begin{cases}2\left(1+\frac{1}{q-1}\right)\left(\frac{q+1}{2}\right)^{n} & \text { if } q \text { is odd } \\ \frac{2 q}{q+\sqrt{q}-2}\left(\frac{q+\sqrt{q}}{2}\right)^{n} & \text { if } q \text { is an even power of } 2 \\ \frac{8 q}{5 q+2 \sqrt{q}-3}\left(\frac{5 q+2 \sqrt{q}+5}{8}\right)^{n} & \text { if } q \text { is an odd power of } 2\end{cases}
$$

Non-linear maps

There are several criteria which measure (non-)linearity of a map:
(1) Algebraic degree: a linear map has algebraic degree 1
(2) Differential properties: Given a linear map L, for any fixed non-zero a the set $\left\{L(x+a)-L(x) \mid x \in \mathbb{F}_{\boldsymbol{q}}\right\}$ contains only one element, namely $L(a)$.
(3) Linear approximation: a non-linear map does not allow a good affine approximation.

APN maps

A map $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called almost perfect nonlinear (APN), if for every fixed non-zero $a \in \mathbb{F}_{2^{n}}$

$$
\left|\left\{f(x+a)+f(x): x \in \mathbb{F}_{2^{n}}\right\}\right|=2^{n-1}
$$

Applications

- Cryptology: The best resistance against differential attacks
- Coding theory: [2 $\left.2^{n}-1,2^{n}-2 n-1,5\right]$-codes
- Finite geometry: Constructions of dimensional dual hyperovals

APN exponents on $\mathbb{F}_{2}{ }^{n}$

An integer $1 \leq d \leq 2^{n}-2$ is called an APN exponent on $\mathbb{F}_{2^{n}}$ if the corresponding map $x \mapsto x^{d}$ is APN on $\mathbb{F}_{2^{n}}$.

An APN exponent d is called exceptional, if it defines APN maps for infinitely many n.

Some questions on the classification of APN exponents:

- Characterize all APN exponents. (Open)
- Characterize all exceptional APN exponents. (Solved)
- What are the possible binary weights of APN exponents d (or equivalently, algebraic degree of x^{d}) on $\mathbb{F}_{2^{n}}$? (Open)

APN exponents on $\mathbb{F}_{2}{ }^{n}$

(All known) APN exponents on $\mathbb{F}_{2^{n}}$:
$-2^{k}+1$ with $\operatorname{gcd}(k, n)=1$ (Gold's exponent)

- $2^{2 k}-2^{k}+1$ with $\operatorname{gcd}(k, n)=1$ (Kasami's exponent)
$-2^{4 m}+2^{3 m}+2^{2 m}+2^{m}-1$ for $n=5 m$ (Dobbertin's exponent)
- $2^{m}+3$ for $n=2 m+1$ (Welch's exponent)
$-2^{m}+2^{\frac{m}{2}}-1$ for $n=2 m+1$ with m even, and $2^{m}+2^{\frac{3 m+1}{2}}-1$ for $n=2 m+1$ with m odd (Niho's exponents)
- $2^{n}-2$ for n odd (field inverse).

Only Gold and Kasami APN exponents are exceptional. [HernandoMcGuire(2011)]

APN exponents on $\mathbb{F}_{2}{ }^{n}$

There are more APN exponents known.

Fact: If d is an $A P N$ exponent on $\mathbb{F}_{2}{ }^{n}$, then:
$2 \cdot d \bmod 2^{n}-1$ is an APN exponent on $\mathbb{F}_{2^{n}}$ too;
and also its inverse d^{-1} modulo $2^{n}-1$ is an APN exponent on $\mathbb{F}_{2}{ }^{n}$, when n is odd.

Can we find the inverses of the APN exponents explicitly?

- Yes, if d depends on n;
- (probably) No, if d is exceptional.

Inverses of APN exponents

The inverses of all known APN exponents depending on n are explicitly known:

- field inverse (trivial)
- Niho's exponents (Portmann and Rennhard 1997)
- Welch's and Dobbertin's exponents (K. and Suder 2014)

Only partial results for Gold and Kasami exponents.

Inverse of Dobbertin's exponent

Theorem [K.-Suder (2014)] Let m be odd. Then the least positive residue of the inverse of Dobbertin's exponent $d=2^{4 m}+2^{3 m}+$ $2^{2 m}+2^{m}-1$ modulo $2^{5 m}-1$ is

$$
\frac{1}{2}\left(\frac{2^{5 m}-1}{2^{m}-1} \cdot \frac{2^{m+1}-1}{3}-1\right)
$$

and its binary weight is $\frac{5 m+3}{2}$.

Remark:

- The key step in proving such results is to guess the formula.
- The inverse of Dobbertin's exponent shows existence of APN maps of algebraic degree $\frac{n+1}{2}+1$ on $\mathbb{F}_{2^{n}}$ when $n=5 m$ is odd.

Crooked maps

An APN map $f: \mathbb{F}_{\mathbf{2}^{n}} \rightarrow \mathbb{F}_{\mathbf{2}^{n}}$ is called crooked, if for every fixed non-zero $a \in \mathbb{F}_{2^{n}}$

$$
\left\{f(x+a)+f(x): x \in \mathbb{F}_{\mathbf{2}^{n}}\right\}
$$

is an affine hyperplane.

Fact: An exponent d is crooked if and only if it is a Gold APN exponent, that is $d=2^{i}+2^{j}$. [K.2007]

Conjecture: Every crooked map must be of shape

$$
\sum_{i, j} a_{i, j} x^{2^{i}+2^{j}}
$$

However the Coulter-Matthews planar exponents do exist!

Planar maps

If $q=p^{n}$ odd, a map $\boldsymbol{f}: \mathbb{F}_{\boldsymbol{q}} \rightarrow \mathbb{F}_{\boldsymbol{q}}$ is called planar, if for every fixed non-zero $a \in \mathbb{F}_{\boldsymbol{q}}$

$$
\left\{f(x+a)-f(x): x \in \mathbb{F}_{\boldsymbol{q}}\right\}=\mathbb{F}_{\boldsymbol{q}}
$$

Easy examples: $x^{2}, x^{p^{i}+1}$

Conjecture: [Dembowski and Ostrom (1967)]: Every planar map is given by

$$
\sum_{i, j} a_{i, j} x^{p^{i}+p^{j}}
$$

Counterexample [Coulter and Matthews (1996)]: The monomial

$$
x^{\frac{3^{k}+1}{2}}
$$

defines a planar map on $\mathbb{F}_{3^{n}}$ iff k is odd and $\operatorname{gcd}(k, n)=1$.

THANK YOU

