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Outline

• Special maps yielding small Kakeya sets

• Non-linear monomial maps
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Kakeya Sets

A subset K of F
n
q is called a Kakeya set if it contains a line in

every direction.

Let α ∈ F
n
q , α 6= 0. Then a line in direction α is just

{α · t+ β | t ∈ Fq},

where β ∈ F
n
q is arbitrary.

Goal: Constructions for small Kakeya sets.
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Kakeya Sets

A subset K ⊆ F
n
q is a Kakeya set if for every non-zero α ∈ F

n
q

there is a βα ∈ F
n
q such that the line

{α · t+ βα | t ∈ Fq}

is contained in K.

Suppose we know the map α 7→ βα, then the set

⋃

α
{α · t+ βα | t ∈ Fq}

is a Kakeya set.

Hence, constructing a small Kakeya set is equivalent to finding a

map α 7→ βα such that the above union is small.
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Kakeya Sets: A Construction

Problem: Find a map α 7→ βα such that the union

⋃

α
{α · t+ βα | t ∈ Fq}

is small.

Construction: [Kopparty-Lev-Saraf-Sudan (2011)]:

Let w.l.g. α = (a1, a2, . . . , aj−1,1,0, . . . ,0) for some 1 ≤ j ≤ n and

take

βα := (f(a1), f(a2), . . . , f(aj−1),0,0, . . . ,0)

for some fixed map f : Fq → Fq.
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Kakeya Sets: A Construction

Then the line defined by α = (a1, a2, . . . , aj−1,1,0, . . . ,0) is

Lα := {(a1 · t+ f(a1), . . . , aj−1 · t+ f(aj−1), t, 0, . . . ,0) | t ∈ Fq}

and the corresponding Kakeya set is

K =
⋃

α
Lα.

Note that

K = {(y1, . . . , yj−1, t,0, . . . ,0) |1 ≤ j ≤ n, t ∈ Fq, yi ∈ Imf(t)},

with

Imf(t) := {f(x) + t · x |x ∈ Fq}.

Hence, to minimize |K| we need to find a map f : Fq → Fq with

|Imf(t)| small for all t ∈ Fq.
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Searching for good maps f : Fq → Fq ?

Result [Kopparty-Lev-Saraf-Sudan (2011)]:

(a) For every q and f : Fq → Fq, there is an element t ∈ Fq with

|Imf(t)| = |{f(x) + t · x |x ∈ Fq}| >
q

2
.

(b) If q is odd, then the map s : Fq → Fq with x 7→ x2 satisfies

|Ims(t)| = |{x2 + t · x |x ∈ Fq}| =
q +1

2
.

Hence s defines an (asymptotically) optimal Kakeya set (when

the presented construction is used).
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Searching for good maps for even q

Which maps f : Fq → Fq are optimal when q is even ? (Open)

It is worth to try to understand at first monomial maps f(x) = xk,

since

- a best solution for q odd is a monomial map; and

- they are easier to handle: Not all t must be checked: If there

is a ∈ Fq, such that t = ak−1, then

xk + tx = ak ·
(

(x/a)k + (x/a)
)

.
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The best known maps for even q

Let q = 2m. The best known choice for the map f : Fq → Fq is

• f(x) = x2
m/2+1, when m is even

• f(x) = x4 + x3, when m is odd.

Open question: Let q be even. What is the best choice for f ?

What is the best choice for monomial f ?
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A proof from the BOOK

Theorem: Let q = 2m with m even. Then

|{x2m/2+1 : x ∈ Fq}| = 2m/2,

and for any non-zero t ∈ Fq

|{x2m/2+1 + tx : x ∈ Fq}| =
2m +2m/2

2
.

Proof [Peter Müller]: It is enough to compute the size of the

image set of

g(x) := x2
m/2+1 + x,

that is to consider only t = 1.
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A proof from the BOOK

The goal is to compute the image set of g(x) := x2
m/2+1 + x.

Note, if y, z ∈ Fq are such that

g(z) = z2
m/2+1 + z = y2

m/2+1 + y = g(y),

then z = y + u for some u ∈ F
2m/2.

So, let u ∈ F
2m/2. Then

g(y + u) = y2
m/2+1 + y + u(y2

m/2
+ y) + u2 + u

= g(y) + u(y2
m/2

+ y) + u2 + u

= g(y) + u(Tr(y) + u+1).

Thus y and y + u, u 6= 0, have the same image if and only if

u = Tr(y) + 1.
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The implied bounds for Kakeya sets

Theorem[Kopparty-Lev-Saraf-Sudan (2011); K.-Müller-Wang (2014)]:

Let n ≥ 1. There is a Kakeya set K ⊂ F
n
q such that

|K| <
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Non-linear maps

There are several criteria which measure (non-)linearity of a map:

(1) Algebraic degree: a linear map has algebraic degree 1

(2) Differential properties: Given a linear map L, for any fixed

non-zero a the set {L(x+a)−L(x) |x ∈ Fq} contains only one

element, namely L(a).

(3) Linear approximation: a non-linear map does not allow a

good affine approximation.
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APN maps

A map f : F2n → F2n is called almost perfect nonlinear (APN), if

for every fixed non-zero a ∈ F2n

|{f(x + a) + f(x) : x ∈ F2n}| = 2n−1.

Applications

- Cryptology: The best resistance against differential attacks

- Coding theory: [2n − 1,2n − 2n− 1,5]-codes

- Finite geometry: Constructions of dimensional dual hyper-

ovals
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APN exponents on F2n

An integer 1 ≤ d ≤ 2n−2 is called an APN exponent on F2n if the

corresponding map x 7→ xd is APN on F2n.

An APN exponent d is called exceptional, if it defines APN maps

for infinitely many n.

Some questions on the classification of APN exponents:

• Characterize all APN exponents. (Open)

• Characterize all exceptional APN exponents. (Solved)

• What are the possible binary weights of APN exponents d (or

equivalently, algebraic degree of xd) on F2n ? (Open)
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APN exponents on F2n

(All known) APN exponents on F2n:

- 2k +1 with gcd(k, n) = 1 (Gold’s exponent)

- 22k − 2k +1 with gcd(k, n) = 1 (Kasami’s exponent)

- 24m+23m+22m+2m−1 for n = 5m (Dobbertin’s exponent)

- 2m +3 for n = 2m+1 (Welch’s exponent)

- 2m +2
m
2 − 1 for n = 2m+1 with m even, and

2m+2
3m+1

2 −1 for n = 2m+1 with m odd (Niho’s exponents)

- 2n − 2 for n odd (field inverse).

Only Gold and Kasami APN exponents are exceptional. [Hernando-

McGuire(2011)]
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APN exponents on F2n

There are more APN exponents known.

Fact: If d is an APN exponent on F2n, then:

2 · d mod 2n − 1 is an APN exponent on F2n too;

and also its inverse d−1 modulo 2n − 1 is an APN exponent

on F2n, when n is odd.

Can we find the inverses of the APN exponents explicitly?

- Yes, if d depends on n;

- (probably) No, if d is exceptional.
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Inverses of APN exponents

The inverses of all known APN exponents depending on n are

explicitly known:

• field inverse (trivial)

• Niho’s exponents (Portmann and Rennhard 1997)

• Welch’s and Dobbertin’s exponents (K. and Suder 2014)

Only partial results for Gold and Kasami exponents.
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Inverse of Dobbertin’s exponent

Theorem [K.-Suder (2014)] Let m be odd. Then the least positive

residue of the inverse of Dobbertin’s exponent d = 24m + 23m +

22m +2m − 1 modulo 25m − 1 is

1

2

(

25m − 1

2m − 1
· 2

m+1 − 1

3
− 1

)

and its binary weight is 5m+3
2 .

Remark:

- The key step in proving such results is to guess the formula.

- The inverse of Dobbertin’s exponent shows existence of APN

maps of algebraic degree n+1
2 +1 on F2n when n = 5m is odd.
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Crooked maps

An APN map f : F2n → F2n is called crooked, if for every fixed

non-zero a ∈ F2n

{f(x+ a) + f(x) : x ∈ F2n}

is an affine hyperplane.

Fact: An exponent d is crooked if and only if it is a Gold APN

exponent, that is d = 2i +2j. [K.2007]

Conjecture: Every crooked map must be of shape
∑

i,j

ai,j x
2i+2j .

However the Coulter-Matthews planar exponents do exist!
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Planar maps

If q = pn odd, a map f : Fq → Fq is called planar, if for every

fixed non-zero a ∈ Fq

{f(x+ a)− f(x) : x ∈ Fq} = Fq.

Easy examples: x2, xpi+1

Conjecture: [Dembowski and Ostrom (1967)]: Every planar map

is given by
∑

i,j

ai,j x
pi+pj ,

Counterexample [Coulter and Matthews (1996)]: The monomial

x
3k+1

2

defines a planar map on F3n iff k is odd and gcd(k, n) = 1.
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