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Introduction

This talk is about when the L-polynomial of one curve divides the
L-polynomial of another curve.

We will discuss L-polynomials, and present one theorem.

Intermission (some philosophy)

We will then take a detour into Linear Recurring Sequences and
use some results from there to prove another theorem.

Based on two papers:
– Omran Ahmadi, Gary McGuire, proceedings BCC 2015.
– Omran Ahmadi, Gary McGuire, Antonio Rojas Leon,
Decomposing Jacobians of Curves over Finite Fields in the Absence
of Algebraic Structure, J Number Theory, Nov 2015.
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Curves

Curves in the plane are given by polynomial equations like

y = f (x) or y2 = f (x) or f (x , y) = 0.
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Curves

Curves in the plane are given by polynomial equations like

y = f (x) or y2 = f (x) or f (x , y) = 0.

If the curve is smooth, and f (x , y) has degree d , then the genus of
the curve is

g =
(d − 1)(d − 2)

2
Example: curve of genus 1, over the real numbers, y2 = cubic in x
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Finite Fields

Let q = pn where p is a prime number.

There is a finite field with q elements, denoted Fq or GF (q).

For any n ≥ 1, Fq has an extension field of degree n, denoted Fqn .
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Let C = C (Fq) be a (projective, smooth, absolutely irreducible)
algebraic curve of genus g defined over Fq.
e.g. a plane curve, f ∈ Fq[x , y ]

C (Fq) = {(x , y) ∈ Fq × Fq : f (x , y) = 0} ∪ {∞}

For any n ≥ 1 let C (Fqn) be the set of Fqn -rational points of C :

C (Fqn) = {(x , y) ∈ Fqn × Fqn : f (x , y) = 0} ∪ {∞}

and let #C (Fqn) be the cardinality of this set.

Example: f (x , y) = y2 + y − x3 = 0 defined over F2.
C (F2) = {(0, 0), (0, 1),∞} #C (F2) = 3
C (F4) = {(0, 0), (0, 1), (1, α), · · · } #C (F4) = 9
C (F8) = {(0, 0), (0, 1), · · · } #C (F8) = 9

We want to study these numbers #C (Fqn), n ≥ 1.

#C (Fq), #C (Fq2), #C (Fq3), #C (Fq4), #C (Fq5), #C (Fq6), . . .
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The zeta function of C (Fq) is defined by

ZC (t) = exp

(∑
n≥1

#C (Fqn)
tn

n

)
∈ Q[[t]].

It can be shown (Schmidt 1931) that

ZC (t) =
LC (t)

(1− t)(1− qt)

where LC (t) ∈ Z[t] (called the L-Polynomial of C ) is of degree 2g .

First consequence: Zeta function is a finite object!
LC (t) contains all the information.
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Second consequence

ZC (t) = exp

(∑
n≥1

#C (Fqn)
tn

n

)
=

LC (t)

(1− t)(1− qt)

Taking logs (and doing easy rearrangements) gives

log LC (t) =
∑
n≥1

(#C (Fqn)− qn − 1)
tn

n
(1)

It is more natural to study these numbers

an := #C (Fqn)− (qn + 1).

Write

LC (t) =

2g∏
i=1

(1− αi t)

and then taking logs and substituting in (1) gives

an := #C (Fqn)− (qn + 1) = −
2g∑
i=1

αn
i
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Hasse-Weil

an := #C (Fqn)− (qn + 1) = −
2g∑
i=1

αn
i

We don’t need this but...
The zeta function satisfies a functional equation, and |αi | =

√
q.

The Hasse-Weil bound follows immediately

|an| ≤ 2gqn/2
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When g = 1: it can be shown that LC (t) = qt2 + c1t + 1, where
c1 = #C (Fq)− (q + 1).

So for genus 1, the L-polynomial is equivalent to #C (Fq).
All the #C (Fqn) are determined by #C (Fq).

When g = 2: we must have LC (t) = q2t4 + qc1t
3 + c2t

2 + c1t + 1
where c1 = #C (Fq)− (q + 1), and 2c2 = #C (Fq2)− (q2 + 1) + c21 .

So for genus 2, the L-polynomial is equivalent to #C (Fq) and
#C (Fq2).

In general, the coefficients of the L-polynomial are determined by
#C (Fqn) for n = 1, 2, . . . , g .
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Back to the point..

Example: Over F2 the curve C1 : y2 + y = x3 + x has
L-polynomial 2t2 + 2t + 1

Example: The curve C2 : y2 + y = x5 + x
has genus 2 and L-polynomial

4t4 + 2t3 + 4t2 + 2t + 1 = (2t2 + 2t + 1)(2t2 + 1).

Question for this talk: Does it mean anything if the L-polynomial
of one curve divides the L-polynomial of another curve?

It’s not hard to show that these curves have the same number of
rational points over F2n for all odd n.
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First Observation

Theorem

Let C and D be two smooth projective curves over Fq. Assume
that there exists a positive integer k > 1 such that
LD(t) = q(tk)LC (t) for some polynomial q(t) in Z[t].
Then #C (Fqm) = #D(Fqm) for every m that is not divisible by k .

Sketch: Recall

log LC (t) =
∑
m≥1

(#C (Fqm)− 1− qm)
tm

m
.

From LD(t) = q(tk)LC (t) we have

log LD(t) = log q(tk) + log LC (t).

Formal power series for log finishes the proof.

Could the converse be true??
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Recent Work

All L-polynomials are over Fq.

Theorem (from previous slide)

Let C and D be two smooth projective curves over Fq. Assume
that there exists a positive integer k > 1 such that
LD(t) = q(tk) LC (t) for some polynomial q(t) in Z[t].
Then #C (Fqm) = #D(Fqm) for every m that is not divisible by k .

Theorem (Ahmadi-M-Rojas Leon, J Number Theory 2015)

Let C and D be two smooth projective curves over Fq. Assume
there exists a positive integer k > 1 such that

1 #C (Fqm) = #D(Fqm) for every m that is not divisible by k ,
and

2 the k-th powers of the roots of LC (t) are all distinct.

Then LD(t) = q(tk) LC (t) for some polynomial q(t) in Z[t].
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We remark that the theorem is no longer true when we replace the
first hypothesis
“for every m that is not divisible by k”
with the weaker hypothesis
“for every m with gcd(m, k) = 1.”

A counterexample is given in our paper.
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Further examples

Example: Over F2 consider the family of curves (k ≥ 1)

Ck : y2 + y = x2
k+1 + x

The first five L-polynomials, computed and factored over Z using
MAGMA, are

C1 : 2t2 + 2t + 1
C2 : (2t2 + 2t + 1)(2t2 + 1)
C3 : (2t2 + 2t + 1)(8t6 + 4t3 + 1)
C4 : (2t2+2t+1)(128t14+64t12+32t10+16t8+8t6+4t4+2t2+1)
C5 : (2t2 + 2t + 1)(32768t30 + 8192t25 + 1024t20 + 32t10 + 8t5 + 1)
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Known approaches to proving divisibility of L-polynomials

Theorem (Kleiman, Serre)

If there is a morphism of curves C −→ D that is defined over Fq

then LD(t) divides LC (t).

Example: Over F2 the map

(x , y) −→ (x2 + x , y + x3 + x2)

is a morphism from

C2 : y2 + y = x5 + x −→ C1 : y2 + y = x3 + x

The L-polynomials are 2t2 + 2t + 1 and (2t2 + 2t + 1)(2t2 + 1).
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Kleiman-Serre doesn’t always apply

Curves over F2

D1 : y2 + xy = x5 + x .

has L-polynomial 4t4 + 2t3 + t + 1

D2 : y2 + xy = x7 + x .

has L-polynomial (4t4 + 2t3 + t + 1)(2t2 + 1)

We can prove that there is no map D2 −→ D1.
And yet.... there is divisibility.
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Kani-Rosen, also doesn’t always apply

In the special case where Aut(C ) contains the Klein 4-group G
with subgroups H1, H2, H3, the Kani-Rosen theorem implies an
isogeny which implies the following L-polynomial relation

LC (t) LC/G (t)2 = LC/H1
(t) LC/H2

(t) LC/H3
(t).

Example: same curves over F2

D1 : y2 + xy = x5 + x .

has L-polynomial 4t4 + 2t3 + t + 1

D2 : y2 + xy = x7 + x .

has L-polynomial (4t4 + 2t3 + t + 1)(2t2 + 1)

The automorphism groups have order 2 (Poonen).
And yet.... there is divisibility.
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Some Philosophy and Context

Can #C (Fq) = #D(Fq) be a coincidence ?
How might we explain #C (Fq) = #D(Fq) ?

If there is an appropriate map between the curves, an “algebraic
reason”, then it’s not a coincidence that #C (Fq) = #D(Fq).

If there is no relationship, no connection between C and D, it’s a
combinatorial accident.

For curves of genus 1, a theorem of Tate says there are no
accidents:

Tate: Two elliptic curves have same number of Fq points if and
only if there is an Fq isogeny from one to the other.

Gary McGuire L-Polynomials of Curves over Finite Fields



Higher Genus Curves over Finite Fields, Jacobians

Let C be a nonsingular projective curve of genus g over Fq.
The Jacobian of C is isomorphic as a group to the divisor class
group Pic0(C ).
(Pic0(C ) = Degree 0 divisors modulo principal divisors)

Arithmetic is governed by the Riemann-Roch theorem.
The Jacobian is a variety, an abelian (group) variety.

The Frobenius automorphism of Fq induces an endomorphism π of
a 2g -dimensional Q`-vector space (namely T`(Jac(C ))⊗Q` where
T`(Jac(C )) is the `-adic Tate module, where ` 6= p is prime).

So π has a characteristic polynomial of degree 2g . Call it χC (t).
Weil showed that χC (t) is the reciprocal of LC (t).

Point counting algorithms find χC (t), use |Jac(C )| = χC (1).
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Coincidence?

Theorem (Tate)

LC (t) divides LD(t) if and only if the Jacobian of D(Fq) has a
subvariety isogenous to the Jacobian of C (Fq).

For genus 1 curves

Same number Fq points ⇐⇒ isogeny between curves

For higher genus curves, we ask (using Tate)

”Same number points over infinitely many extensions”

? ⇐⇒ ?

isogeny between Jacobians
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Part 2: Linear Recurring Sequences

A linear recurring sequence of order d is a sequence of integers
A = (an)n≥1 satisfying the homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ cdan−d for n ≥ d + 1,

where c1, . . . , cd are integers, cd 6= 0.
The recurrence and the initial values a1, . . . , ad determine the
complete infinite sequence.
The characteristic polynomial of the sequence defined by this
recursion is the polynomial

χ(t) = td − c1t
d−1 − · · · − cd−1t − cd ∈ Z[t].

This does not depend on the initial values.
The characteristic polynomial of smallest degree is called the
minimal polynomial.
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A Well Known Theorem

Theorem

Let χ(t) = td − c1t
d−1 − · · · − cd−1t − cd be a polynomial with

cd 6= 0. Factor χ(t) as

χ(t) =
r∏

i=1

(t − αi )
mi

over Q, where the αi are distinct, and the mi are positive integers.
Then a sequence (an)n≥1 satisfies the linear recurrence with
characteristic polynomial χ(t) if and only if there exist polynomials
P1(n),P2(n), . . . ,Pr (n), where Pi (n) has degree ≤ mi − 1, such
that

an =
r∑

i=1

Pi (n)αn
i for every n ≥ 1.
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The Sequence of a Curve

Write LC (t) = 1 + c1t + · · ·+ c2g−1t
2g−1 + qg t2g .

Denote the reciprocal polynomial of the L-polynomial of C (Fq) as
χC (t) = t2g + c1t

2g−1 + · · ·+ c2g−1t + qg .

Write

χC (t) =

2g∏
i=1

(t − αi ), LC (t) =

2g∏
i=1

(1− αi t),

the αi are called the Frobenius eigenvalues of C (Fq).

The ‘trace of Frobenius’ is c1 = −
∑2g

i=1 αi = #C (Fq)− (q + 1).

As we saw earlier the L-polynomial of C (Fqn) is
∏2g

i=1(1− αn
i t),

and thus

#C (Fqn)− (qn + 1) = −
2g∑
i=1

αn
i
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Given a curve C defined over Fq, the sequence of C is

an := #C (Fqn)− (qn + 1) = −
2g∑
i=1

αn
i

By the Well Known Theorem this is a linear recurring sequence of
integers.

What does the theory of linear recurring sequences say about an?
e.g. What is the characteristic polynomial?

Theorem

The characteristic polynomial of the sequence of C is χC (t), the
reciprocal polynomial of the L-polynomial of C .

Proof: This follows from the Well Known Theorem.
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Example: C1 : y2 + y = x3 + x over F2 (curve of genus 1)
The L-polynomial of C1 is 2t2 + 2t + 1.
The characteristic polynomial is χC (t) = t2 + 2t + 2.
So an = −2an−1 − 2an−2 is the recursion.
With the two initial values a1 = −2, a2 = 0, the sequence of C1:

−2, 0, 4,−8, 8, 0,−16, 32,−32, 0, 64,−128, 128, 0,−256, 512...
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Subsequences

Consider subsequences in arithmetic progressions, as , a2s , a3s , . . .
where s > 1 is a fixed positive integer.

Theorem

Let (an)n≥1 be a linear recurring sequence with characteristic
polynomial χ(t). Let s > 1 be a positive integer.
Then the characteristic polynomial of the subsequence (asn+j)n≥1
is the polynomial whose roots are the s-th powers of the roots of
χ(t).

(This requires that the roots and their s-th powers be distinct.)
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Subsequences

For the sequence (an)n≥1 of a curve C defined over Fq...

the subsequence (asn)n≥1 gives the numbers of rational points on
C over Fqs and all its extensions, which is equivalent to the
L-polynomial of C (Fqs ).

#C (Fq), . . . , #C (Fqs ), . . . , #C (Fq2s ), . . .

Therefore, if L(t) =
∏2g

i=1(1− αi t) is the L-polynomial of C (Fq),
it follows from the above Theorem that
the L-polynomial of C (Fqs ) is

∏2g
i=1(1− αs

i t).
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The Skolem-Mahler-Lech Theorem

We use the following theorem.

Theorem (Skolem-Mahler-Lech)

Let A be a linear recurrence sequence of integers. If A contains
infinitely many zeros, then the set of indices n for which an = 0 is
the union of a finite set and a finite number of arithmetic
progressions.

Proof is not elementary. See blog by Terence Tao, or ”Zeros of
Integer Linear Recurrences” by Daniel Litt.

Apart from the finite set, this says that the zeros must occur in
subsequences (asn+j)n≥1.
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Theorem (Ahmadi-M)

Let C (Fq) and D(Fq) be a smooth projective curves such that

1 C (Fq) and D(Fq) have the same number of points over
infinitely many extensions of Fq.

2 The L-polynomial of C over Fqk has no repeated roots, for all
k ≥ 1.

Then there exists a positive integer s such that the L-polynomial of
D(Fqs ) is divisible by the L-polynomial of C (Fqs ).

Sketch Proof: Let an = sequence for C , let bn = sequence for D.
The Skolem-Mahler-Lech theorem implies that the n for which
an = bn form a union of arithmetic progressions.
So ans+j = bns+j for all n ≥ 1.
So these subsequences have the same minimal polynomial, which is
the L-polynomial over Fqs . Now finish.
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Clearly the value of the positive integer s is of interest.
Often s = 1.

However be careful, s cannot always be 1:
Let C1 be an elliptic curve with L-polynomial qt2 + at + 1
Let C2 be its quadratic twist, with L-polynomial qt2 − at + 1.
An elliptic curve and its quadratic twist are isomorphic over Fq2 .
In this case s = 2.
Here is a case when we can prove s = 1.

Theorem

Let q be odd. Same hypotheses, plus let M be the splitting field of
the characteristic polynomial χD(t), and suppose that the ideal (2)
splits completely in M. Then s = 1.

Referring to elliptic curves, for an elliptic curve E with
χE (t) = t2 + at + q, the ideal (2) never splits completely in the
splitting field M = Q(

√
a2 − 4q) because a2 − 4q cannot be 1

modulo 8.
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Future Work

Can these theorems be strengthened?

What are iff conditions for LC (t) to divide LD(t) ?
(We gave iff conditions when LD(t)/LC (t) is a polynomial in tk .)

For the family of curves over F2

Ck : y2 + y = x2
k+1 + x

Conjecture: L-polynomial of C1 divides L-polynomial of Ck

(proved by Robin Chapman)

For
Dk : y2 + xy = x2

k+3 + x

Conjecture: L-polynomial of D1 divides L-polynomial of Dk

Conjecture: D1 and Dk have the same number of points over
infinitely many extensions.
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An morphism of curves is an algebraic map that is defined
everywhere.

Let A,A′ be abelian varieties of dimension g over K . An isogeny
η : A −→ A′ is a K-rational homomorphism (a morphism of
varieties compatible with the addition morphisms on A and A′)
whose kernel is a finite group scheme.
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Proof ideas...
By hypothesis, there exists a positive integer k such that

2g(C)∑
i=1

αm
i =

2g(D)∑
j=1

βmj

for every m with k - m. This gives an equality of certain zeta
functions, namely

exp

∑
m:k-m

2g(C)∑
i=1

αm
i

tm

m


The difference between this and a usual zeta function is

∑
m:k|m

2g(C)∑
i=1

αm
i

tm

m
=
∑
m

2g(C)∑
i=1

αkm
i

tkm

km

which can be viewed as a zeta function over an extension field.
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Using Kani-Rosen and automorphisms from van der Geer-van der
Vlugt, MAGMA computes the L-polynomials of quotient curves of
C6 to be

(2t2 − 1)2(2t2 + 1)4(4t4 − 2t2 + 1)3(4t4 + 2t2 + 1)2

and

(2t2−2t+1)3(2t2+2t+1)3(4t4−4t3+2t2−2t+1)2(4t4+4t3+2t2+2t+1)3.

The L-polynomial of C6 is the product of these.
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