Some Open Problems Arising from my Recent Finite Field Research

Gary L. Mullen

Penn State University
mullen@math.psu.edu

July 13, 2015
Let q be a prime power

Let F_q denote the finite field with q elements
E-perfect codes

Theorem

(Hamming bound) Let C be a t-error-correcting code of length n over F_q. Then

$$|C| \left[1 + \binom{n}{1}(q - 1) + \binom{n}{2}(q - 1)^2 + \cdots + \binom{n}{t}(q - 1)^t\right] \leq q^n.$$

A code C is **perfect** if the code’s parameters yield an equality in the Hamming bound.

The parameters of all perfect codes are known, and can be listed as follows:
The trivial perfect codes are

1. The zero vector \((0, \ldots, 0)\) of length \(n\),
2. The entire vector space \(F_q^n\)
3. The binary repetition code of odd length \(n\).

The non-trivial perfect codes must have the parameters \((n, M = q^k, 3)\) of the Hamming codes and the Golay codes (unique up to equivalence) whose parameters can be listed as follows:

1. The Hamming code \(\left[\frac{q^m-1}{q-1}, n-m, 3\right]\) over \(F_q\), where \(m \geq 2\) is a positive integer;
2. The \([11, 6, 5]\) Golay code over \(F_3\);
3. The \([23, 12, 7]\) Golay code over \(F_2\).
Let C be a t-error-correcting code of length n over F_q.

Then,

$$|C| \left[1 + \binom{n}{1}(q-1) + \binom{n}{2}(q-1)^2 + \cdots + \binom{n}{t}(q-1)^t \right] \leq q^n.$$

A t-error correcting code C with parameters $(n, M, d), t = \left\lfloor \frac{d-1}{2} \right\rfloor$, is e-perfect if in the Hamming bound, equality is achieved when, on the right hand side, q^n is replaced by q^e.

An n-perfect code is a perfect code.
Conjecture

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_q. Then C must have one of the following sets of parameters:

1. $\left(\frac{q^m-1}{q-1}, q^{e-m}, 3\right)$, with q a prime power and $m < e \leq n$, where $m \geq 2$;
2. $(11, 3^{e-5}, 5)$, with $q = 3$ and $5 < e \leq 11$;
3. $(23, 2^{e-11}, 7)$, with $q = 2$ and $11 < e \leq 23$;
4. $(90, 2^{e-12}, 5)$, with $q = 2$ and $12 < e \leq 89$.

Problem

Prove this conjecture.

We can construct e-perfect codes with each of the parameters listed above, except for the case when $n = 90$ and $e = 89$.

As was the case for perfect codes, there could be many e-perfect codes with a given set of parameters.
R-closed subsets of \mathbb{Z}_p

Let G be a finite abelian group with $|G| = g$

Let S be a subset of G with $|S| = s$.

Definition

Let $0 \leq r \leq s^2$. A set S is r-closed if, among the s^2 ordered pairs (a, b) with $a, b \in S$, there are exactly r pairs such that $a + b \in S$.

The r-value of the r-closed set S is denoted by $r(S)$.
If S is a subgroup of G then S is s^2-closed

If S is a sum-free set then S is 0-closed.

For a given G, what (if anything) can be said about the spectrum of r-values of the subsets of G?

Motivated by the classical Cauchy-Davenport Theorem, we are particularly interested in the case when $G = \mathbb{Z}_p$ under addition modulo the prime p.
For $G = \mathbb{Z}_p$ we characterize the maximal and minimal possible r-values.

We make a conjecture (verified computationally for all primes $p \leq 23$) about the complete spectrum of r-values for any subset cardinality in \mathbb{Z}_p and prove that, for any p, all conjectured r-values in the spectrum are attained when the subset cardinality is suitably small ($s < \frac{2p+2}{7}$).
Theorem

Let G be a finite abelian group of order g. Let s be a positive integer with $0 \leq s \leq g$, and let S be a subset of G of size s. Let T be the complement of S in G. Then

$$r(S) + r(T) = g^2 - 3gs + 3s^2.$$
Theorem (Cauchy-Davenport)

If A and B are non-empty subsets of \mathbb{Z}_p then
\[|A + B| \geq \min(p, |A| + |B| - 1). \]

Definition

For p be a prime, define

\[k[p] = \left\lfloor \frac{p + 1}{3} \right\rfloor = \begin{cases} \frac{p-1}{3}, & p \equiv 1 \mod 3 \\ \frac{p}{3}, & p \equiv 0 \mod 3 \\ \frac{p+1}{3}, & p \equiv -1 \mod 3 \end{cases} \]

Proposition

Let p be a prime. If $S \subseteq \mathbb{Z}_p$ is 0-closed then $|S| \leq k[p]$.
Definition

Let p be an odd prime. For $0 \leq s \leq p$, define f_s and g_s as follows:

$$f_s = \begin{cases}
0 & s \leq k[p] \\
\frac{(3s-p)^2-1}{4} & s > k[p] \text{ and } s \text{ even} \\
\frac{(3s-p)^2}{4} & s > k[p] \text{ and } s \text{ odd}
\end{cases}$$

$$g_s = \begin{cases}
\frac{3s^2}{4} & s \leq p - k[p] \text{ and } s \text{ even} \\
\frac{3s^2+1}{4} & s \leq p - k[p] \text{ and } s \text{ odd} \\
p^2 - 3sp + 3s^2 & s > p - k[p]
\end{cases}$$

Note that $f_s + g_{p-s} = p^2 - 3sp + 3s^2$.

Proposition

Let $p > 11$. For $1 \leq s \leq 3$ and $p - 3 \leq s \leq p$, the r-values for subsets of \mathbb{Z}_p of size s are precisely the integers in the interval $[f_s, g_s]$ with the following exceptions:

<table>
<thead>
<tr>
<th>s</th>
<th>f_s</th>
<th>g_s</th>
<th>exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>p</td>
<td>p^2</td>
<td>p^2</td>
<td>—</td>
</tr>
<tr>
<td>$p - 1$</td>
<td>$p^2 - 3p + 2$</td>
<td>$p^2 - 3p + 3$</td>
<td>—</td>
</tr>
<tr>
<td>$p - 2$</td>
<td>$p^2 - 6p + 9$</td>
<td>$p^2 - 6p + 12$</td>
<td>$p^2 - 6p + 10$</td>
</tr>
<tr>
<td>$p - 3$</td>
<td>$p^2 - 9p + 20$</td>
<td>$p^2 - 9p + 27$</td>
<td>$p^2 - 9p + 23$</td>
</tr>
</tbody>
</table>
Definition

If $4 \leq s \leq p - 4$, define $V(s)$ by

$$V(s) = \begin{cases} 0 & \text{if } s \leq k[p] \\ \left\lfloor \frac{p-s-3}{4} \right\rfloor & \text{if } s \geq \left\lfloor \frac{p+1}{2} \right\rfloor \\ \left\lceil \frac{3s-p-1}{4} \right\rceil & \text{otherwise} \end{cases}$$
Conjecture

For $p > 11$ and $4 \leq s \leq p - 4$, there are $V(s)$ exceptional values at the low end of the interval $[f_s, g_s]$ and $V(p - s)$ exceptional values at the high end of the interval $[f_s, g_s]$. All other values in the interval can be obtained as r-values. The exceptions are given by:

- $f_s + 3i + 1$ for $0 \leq i < V(s)$ if $s \equiv p \mod 2$
- $f_s + 3i + 2$ for $0 \leq i < V(s)$ if $s \not\equiv p \mod 2$
- $g_s - 3i - 1$ for $0 \leq i < V(p - s)$ if s is even
- $g_s - 3i - 2$ for $0 \leq i < V(p - s)$ if s is odd

Verified computationally for all primes $p \leq 23$ and all corresponding s ($4 \leq s \leq p - 4$).

Problem

Prove the conjecture
All conjectured r-values in the spectrum are attained when the subset cardinality is suitably small ($s < \frac{2p+2}{7}$).
Subfield Value Sets

Let F_{q^d} be a subfield of F_{q^e} so $d|e$

For $f \in F_{q^e}[x]$, subfield value set $V_f(q^e; q^d) = \{ f(c) \in F_{q^d} | c \in F_{q^e} \}$

Theorem

$$|V_{x^n}(q^e; q^d)| = \frac{(n(q^d - 1), q^e - 1)}{(n, q^e - 1)} + 1$$
Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x, a) = \sum_{i=0}^{[n/2]} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

$$D_n(x, 0) = x^n$$

Theorem

$$|V_{D_n(x,a)}| = \frac{q - 1}{2(n, q - 1)} + \frac{q + 1}{2(n, q + 1)} + \alpha$$

α usually 0.
Theorem

q odd and $a \in F_{q^e}^*$ with $a^n \in F_{q^d}$, $\eta_{q^e}(a) = 1$ and $\eta_{q^d}(a^n) = 1$,

$$|V_{D_n(x,a)}(q^e; q^d)| = \frac{(q^e - 1, n(q^d - 1)) + (q^e - 1, n(q^d + 1))}{2(q^e - 1, n)} + \frac{(q^e + 1, n(q^d - 1)) + (q^e + 1, n(q^d + 1))}{2(q^e + 1, n)} - \frac{3 + (-1)^{n+1}}{2}$$

Problem

Find subfield value set $|V_{D_n(x,a)}(q^e; q^d)|$ when $a \in F_{q^e}^*$ and $a^n \not\in F_{q^d}$
In order to have $D_n(c, a) = y^n + \frac{a^n}{y^n} \in F_{q^d}$ we need

$$(y^n + \frac{a^n}{y^n})^{q^d} = y^n + \frac{a^n}{y^n}. $$

If $a^n \in F_{q^d}$

$$(y^n(q^d-1) - 1)(y^n(q^d+1) - a^n) = 0.$$
Hypercubes of class r

Definition

Let d, n, r, t be integers, with $d > 0, n > 0, r > 0$ and $0 \leq t \leq d - r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^r distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining $d - t$ coordinates to vary) each of the n^r distinct symbols appears exactly n^{d-t-r} times.

If $d \geq 2r$, two such hypercubes are **orthogonal** if when superimposed, each of the n^{2r} possible distinct pairs occurs exactly n^{d-2r} times.

A set \mathcal{H} of such hypercubes is **mutually orthogonal** if any two distinct hypercubes in \mathcal{H} are orthogonal.

A $(2, n, 1, 1)$ hypercube is a latin square order n.

If $r = 1$ we have latin hypercubes.
A hypercube of dimension 3, order 3, class 2, and type 1.
Theorem

The maximum number of mutually orthogonal hypercubes of dimension \(d \), order \(n \), type \(t \), and class \(r \) is bounded above by

\[
\frac{1}{n^r - 1} \left(n^d - 1 - \binom{d}{1}(n - 1) - \binom{d}{2}(n - 1)^2 - \cdots - \binom{d}{t}(n - 1)^t \right).
\]

Corollary

There are at most \(n - 1 \) mutually orthogonal Latin squares of order \(n \).

Theorem

Let \(q \) be a prime power. The number of \((2r, q, r, r)\)-hypercubes is at least the number of linear MDS codes over \(F_q \) of length \(2r \) and dimension \(r \).
Theorem

There are at most \((n - 1)^r\), \((2r, n, r, r)\) mutually orthogonal hypercubes.

Theorem

Let \(n\) be a prime power. For any integer \(r < n\), there is a set of \(n - 1\) mutually orthogonal \((2r, n, r, r)\)-hypercubes.

Theorem

Let \(n = 2^{2k}\), \(k \in \mathbb{N}\). Then there is a complete set of \((n - 1)^2\) mutually orthogonal hypercubes of dimension 4, order \(n\), and class 2.

D. Droz: If \(r = 2\) and \(n\) is odd, there is complete set.
Hypercube problems

1. Construct a complete set of mutually orthogonal \((4, n, 2, 2)\)-hypercubes when \(n = 2^{2k+1}\).

D. Droz: If \(r = 2\), \(n = 2^{2k+1}\) there are \((n - 1)(n - 2)\) MOHC. Are there \((n - 1)^2\) MOHC?

2. Is the \((n - 1)^r\) bound tight when \(r > 2\)? If so, construct a complete set of mutually orthogonal \((2r, n, r, r)\)-hypercubes of class \(r > 2\). If not, determine a tight upper bound and construct such a complete set.

D. Droz: If \(r \geq 1\) and \(n \equiv 1 \pmod{r}\), there is complete set.

D. Droz: If \(n = p^{rk}\) there is a complete set.

3. Find constructions (other than the standard Kronecker product constructions) for sets of mutually orthogonal hypercubes when \(n\) is not a prime power. Such constructions will require a new method not based on finite fields.

4. What can be said when \(d > 2r\)?
k-Normal elements

Let q be a prime power and $n \in \mathbb{N}$. An element $\alpha \in \mathbb{F}_{q^n}$ yields a normal basis for \mathbb{F}_{q^n} over \mathbb{F}_q if $B = \{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}$ is a basis for \mathbb{F}_{q^n} over \mathbb{F}_q; such an α is a normal element of \mathbb{F}_{q^n} over \mathbb{F}_q.
Theorem

For $\alpha \in \mathbb{F}_{q^n}$, $\{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}$ is a normal basis for \mathbb{F}_{q^n} over \mathbb{F}_q if and only if the polynomials $x^n - 1$ and $\alpha x^{n-1} + \alpha^q x^{n-2} + \cdots + \alpha^{q^{n-1}}$ in $\mathbb{F}_{q^n}[x]$ are relatively prime.

Motivated by this, we make the

Definition

Let $\alpha \in \mathbb{F}_{q^n}$. Denote by $g_\alpha(x)$ the polynomial $\sum_{i=0}^{n-1} \alpha^i x^{n-1-i} \in \mathbb{F}_{q^n}[x]$. If $\gcd(x^n - 1, g_\alpha(x))$ over \mathbb{F}_{q^n} has degree k (where $0 \leq k \leq n - 1$), then α is a k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q.

A normal element of \mathbb{F}_{q^n} over \mathbb{F}_q is 0-normal.
Definition

Let \(f \in \mathbb{F}_q[x] \) be monic, the Euler Phi function for polynomials is given by
\[
\Phi_q(f) = |(\mathbb{F}_q[x]/(f \mathbb{F}_q[x]))^*|.
\]

Theorem

The number of \(k \)-normal elements of \(\mathbb{F}_{q^n} \) over \(\mathbb{F}_q \) is given by
\[
\sum_{h \mid x^n - 1, \; \deg(h) = n - k} \Phi_q(h),
\]
where divisors are monic and polynomial division is over \(\mathbb{F}_q \).
An important extension of the **Normal Basis Theorem** is the **Primitive Normal Basis Theorem** which establishes that, for all pairs \((q, n)\), a normal basis \(\{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}\) for \(\mathbb{F}_{q^n}\) over \(\mathbb{F}_q\) exists with \(\alpha\) a primitive element of \(\mathbb{F}_{q^n}\).

We ask whether an analogous claim can be made about \(k\)-normal elements for certain non-zero values of \(k\)?

In particular, when \(k = 1\), does there always exist a primitive 1-normal element of \(\mathbb{F}_{q^n}\) over \(\mathbb{F}_q\)?
Theorem

Let \(q = p^e \) be a prime power and \(n \in \mathbb{N} \) with \(p \nmid n \). Assume that \(n \geq 6 \) if \(q \geq 11 \), and that \(n \geq 3 \) if \(3 \leq q \leq 9 \). Then there exists a primitive 1-normal element of \(\mathbb{F}_{q^n} \) over \(\mathbb{F}_q \).

Problem

Obtain a complete existence result for primitive 1-normal elements of \(\mathbb{F}_{q^n} \) over \(\mathbb{F}_q \) (with or without a computer). We conjecture that such elements always exist.
Problem

For which values of q, n, and k can explicit formulas be obtained for the number of k-normal primitive elements of \mathbb{F}_{q^n} over \mathbb{F}_q?

Problem

Determine the pairs (n, k) such that there exist primitive k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q.
Conjecture

(L. Anderson/M) Let $p \geq 5$ be a prime and let $m \geq 3$. Let a be 1 or 2 and let k be 0 or 1. Then there is an element $\alpha \in \mathbb{F}_{p^m}$ of order $\frac{p^m - 1}{a}$ which is k-normal.

The $a = 1, k = 0$ case gives the Prim. Nor. Basis Thm.

Problem

Determine the existence of high-order k-normal elements $\alpha \in \mathbb{F}_{q^n}$ over \mathbb{F}_q.
Dickson Polynomials

Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x, a) = \sum_{i=0}^\left\lfloor n/2 \right\rfloor \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

$$D_n(x, 0) = x^n$$
Theorem

Nöbauer (1968) For $a \neq 0$, $D_n(x, a)$ PP on F_q iff $(n, q^2 - 1) = 1$.

Theorem

$$|V_{D_n(x, a)}| = \frac{q - 1}{2(n, q - 1)} + \frac{q + 1}{2(n, q + 1)} + \alpha$$

α usually 0
Reverse Dickson Polynomials

Fix $x \in F_q$ and let a be the variable in $D_n(x, a)$

Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009

$f : F_q \to F_q$ is almost perfect nonlinear (APN) if for each $a \in F_q^*$ and $b \in F_q$ the eq. $f(x + a) - f(x) = b$ has at most two solutions in F_q

Theorem

For p odd, x^n APN on $F_{p^{2e}}$ implies $D_n(1, x)$ PP on F_{p^e} implies x^n APN on F_{p^e}
Conjecture

Let $p > 3$ be a prime and let $1 \leq n \leq p^2 - 1$. Then $D_n(1,x)$ is a PP on \mathbb{F}_p if and only if

$$n = \begin{cases}
2, 2p, 3, 3p, p + 1, p + 2, 2p + 1 & \text{if } p \equiv 1 \pmod{12}, \\
2, 2p, 3, 3p, p + 1 & \text{if } p \equiv 5 \pmod{12}, \\
2, 2p, 3, 3p, p + 2, 2p + 1 & \text{if } p \equiv 7 \pmod{12}, \\
2, 2p, 3, 3p & \text{if } p \equiv 11 \pmod{12}.
\end{cases}$$

Problem

Complete the PP classification for RDPs over \mathbb{F}_p.

Problem

What happens over \mathbb{F}_q when q is a prime power?

Problem

Determine value set for RDPs over \mathbb{F}_p.
THANK YOU!!!