Hyperelliptic Curve Arithmetic

Renate Scheidler

$12^{\text {th }}$ International Conference on Finite Fields and Their Applications
July 16, 2015

Uses of Jacobian Arithmetic

- Number Theory
- Invariant computation (class group/Jacobian, regulator, ...)
- Function field construction
- Function field tabulation
- Geometry
- Algebraic curves
- Cryptography
- Discrete log based crypto
- Pairing based crypto
- Coding Theory?

Discrete Logarithm Based Cryptography

Groups that are used for discrete log based crypto should satisfy the following properties:

For practicality:

- Compact group elements
- Fast group operation

For security:

- Large order
- Cyclic or almost cyclic (plus some other restrictions on the order)
- Intractable discrete logarithm problem (DLP)

Suitable Groups

Proposed Groups:

- $G=\mathbb{F}_{p}^{*}$ (Diffie-Hellman 1976)
- Elliptic curves (Koblitz 1985, Miller 1985)
- Hyperelliptic curves (Koblitz 1989)

Fastest generic DLP algorithms: $O(\sqrt{|G|})$ group operations

- Best known for elliptic (i.e. genus 1) and genus 2 hyperelliptic curves
- Faster algorithms known for finite fields and higher genus curves

For curves of genus g over a finite field $\mathbb{F}_{q}: \quad|G| \sim q^{g}$ as $q \rightarrow \infty$. If we want 80 bits of security (i.e. $\sqrt{q^{g}} \approx 2^{80}$):

- $g=1: \quad q \approx 2^{160}$
- $g=2: \quad q \approx 2^{80}$ (slower group arithmetic but faster field arithmetic)

Elliptic Curves

Let K be a field (in crypto, $K=\mathbb{F}_{q}$ with q prime or $q=2^{n}$)
Weierstraß equation over K :

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{*}
\end{equation*}
$$

with $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in K$
Elliptic curve: Weierstraß equation \& non-singularity condition: there are no simultaneous solutions to $(*)$ and

$$
\begin{aligned}
2 y+a_{1} x+a_{3} & =0 \\
a_{1} y & =3 x^{2}+2 a_{2} x+a_{4}
\end{aligned}
$$

Non-singularity $\Longleftrightarrow \Delta \neq 0$ where Δ is the discriminant of E

An Example

$E: y^{2}=x^{3}-5 x$ over \mathbb{Q}

Elliptic Curves, $\operatorname{char}(K) \neq 2,3$

For $\operatorname{char}(K) \neq 2,3$, the variable transformations

$$
y \rightarrow y-\left(a_{1} x+a_{3}\right) / 2, \text { then } x \rightarrow x-\left(a_{1}^{2}+4 a_{2}\right) / 12
$$

yield an elliptic curve in short Weierstraß form:

$$
E: y^{2}=x^{3}+A x+B \quad(A, B \in K)
$$

Discriminant $\Delta=4 A^{3}+27 B^{2} \neq 0 \quad$ (cubic in x has distinct roots)

For any field L with $K \subseteq L \subseteq \bar{K}$:

$$
E(L)=\left\{\left(x_{0}, y_{0}\right) \in L \times L \mid y_{0}^{2}=x_{0}^{3}+A x_{0}+B\right\} \cup\{\infty\}
$$

set of L-rational points on E.

An Example

$P_{1}=(-1,2), P_{2}=(0,0) \in E(\mathbb{Q})$

The Mysterious Point at Infinity

In E, replace x by $x / z, y$ by y / z, then multiply by z^{3} :

$$
E_{\text {proj }}: y^{2} z=x^{3}+A x z^{2}+B z^{3}
$$

Points on $E_{\text {proj }}$:
$[x: y: z] \neq[0: 0: 0]$, normalized so the last non-zero entry is 1.

$$
\text { Affine Points } \quad \underline{\text { Projective Points }}
$$

$$
\begin{aligned}
(x, y) & \leftrightarrow[x: y: 1] \\
\infty & \leftrightarrow[0: 1: 0]
\end{aligned}
$$

Arithmetic on E

Goal: Make $E(K)$ into an additive (Abelian) group:

- The identity is the point at infinity.
- The inverse of a point $P=\left(x_{0}, y_{0}\right)$ is its opposite $\bar{P}=\left(x_{0},-y_{0}\right)^{\dagger}$
${ }^{\dagger}$ true for odd characteristic only; in general, the opposite of a point $P=\left(x_{0}, y_{0}\right)$ is $\bar{P}=\left(x_{0},-y_{0}-a_{1} x_{0}-a_{3}\right)$.

By Bezout's Theorem, any line intersects E in three points.

- Need to count multiplicities;
- If one of the points is ∞, the line is "vertical" \dagger
${ }^{\dagger}$ true for odd characteristic only; in general, the line goes through P and \bar{P}.

Motto: "Any three collinear points on E sum to zero (i.e. ∞)."
Also known as Chord \& Tangent Addition Law.

Inverses on Elliptic Curves

Inverses on Elliptic Curves

Addition on Elliptic Curves

Addition on Elliptic Curves

Addition on Elliptic Curves

Doubling on Elliptic Curves

$2 \times \cdot=?$

Doubling on Elliptic Curves

Arithmetic on Short Weierstraß Form

Let

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \quad\left(P_{1} \neq \infty, P_{2} \neq \infty, P_{1}+P_{2} \neq \infty\right)
$$

Then

$$
\begin{aligned}
-P_{1} & =\left(-x_{1}, y_{1}\right) \\
P_{1}+P_{2} & =\left(\lambda^{2}-x_{1}-x_{2},-\lambda^{3}+\lambda\left(x_{1}+x_{2}\right)-\mu\right)
\end{aligned}
$$

where

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2} \\ \frac{3 x_{1}^{2}+A}{2 y_{1}} & \text { if } P_{1}=P_{2}\end{cases}
$$

$$
\mu= \begin{cases}\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2} \\ \frac{-x_{1}^{3}+A x_{1}+2 B}{2 y_{1}} & \text { if } P_{1}=P_{2}\end{cases}
$$

Beyond Elliptic Curves

Recall Weierstraß equation:

$$
E: y^{2}+(\underbrace{a_{1} x+a_{3}}_{h(x)}) y=\underbrace{x^{3}+a_{2} x^{2}+a_{4} x+a_{6}}_{f(x)}
$$

$\operatorname{deg}(f)=3=2 \cdot 1+1$ odd
$\operatorname{deg}(h)=1$ for $\operatorname{char}(K)=2 ; h=0$ for $\operatorname{char}(K) \neq 2$
Generalization: $\operatorname{deg}(f)=2 g+1, \operatorname{deg}(h) \leq g$
g is the genus of the curve
$g=1$: elliptic curves
$g=2: \operatorname{deg}(f)=5, \operatorname{deg}(h) \leq 2$ (always hyperelliptic).

Hyperelliptic Curves

Hyperelliptic curve of genus g over K :

$$
H: y^{2}+h(x) y=f(x)
$$

- $h(x), f(x) \in K[x]$
- $f(x)$ monic and $\operatorname{deg}(f)=2 g+1$ is odd
- $\operatorname{deg}(h) \leq g$ if $\operatorname{char}(K)=2 ; h(x)=0$ if $\operatorname{char}(K) \neq 2$
- non-singularity
$\operatorname{char}(K) \neq 2: \quad y^{2}=f(x), \quad f(x)$ monic, of odd degree, square-free

Set of L-rational points on $H(K \subseteq L \subseteq \bar{K})$:

$$
H(L)=\left\{\left(x_{0}, y_{0}\right) \in L \times L \mid y_{0}^{2}+h\left(x_{0}\right) y=f\left(x_{0}\right)\right\} \cup\{\infty\}
$$

An Example

$$
H: y^{2}=x^{5}-5 x^{3}+4 x-1 \text { over } \mathbb{Q}, \text { genus } g=2
$$

Divisors

- Group of divisors on H :

$$
\operatorname{Div}_{H}(\bar{K})=\langle H(\bar{K})\rangle=\left\{\sum_{\text {finite }} m_{P} P \mid m_{P} \in \mathbb{Z}, P \in H(\bar{K})\right\}
$$

- Subgroup of $\operatorname{Div}_{H}(\bar{K})$ of degree zero divisors on H :

$$
\operatorname{Div}_{H}^{0}(\bar{K})=\langle[P] \mid P \in H(\bar{K})\rangle=\left\{\sum_{\text {finite }} m_{P}[P] \mid m_{P} \in \mathbb{Z}, P \in H(\bar{K})\right\}
$$

where $[P]=P-\infty$

- Subgroup of $\operatorname{Div}_{H}^{0}(\bar{K})$ of principal divisors on H :

$$
\operatorname{Prin}_{H}(\bar{K})=\left\{\sum_{\text {finite }} v_{P}(\alpha)[P] \mid \alpha \in K(x, y), P \in H(\bar{K})\right\}
$$

The Jacobian

Jacobian of H : $\quad \operatorname{Jac}_{H}(\bar{K})=\operatorname{Div}_{H}^{0}(\bar{K}) / \operatorname{Prin}_{H}(\bar{K})$
Motto: "Any complete collection of points on a function sums to zero."

$$
H(\bar{K}) \hookrightarrow \mathrm{Jac}_{H}(\bar{K}) \quad \text { via } \quad P \mapsto[P]
$$

For elliptic curves: $E(\bar{K}) \cong \operatorname{Jac}_{E}(\bar{K}) \quad(\Rightarrow E(\bar{K})$ is a group $)$

Identity: $[\infty]=\infty-\infty$
Inverses: The points

$$
P=\left(x_{0}, y_{0}\right) \text { and } \bar{P}=\left(x_{0},-y_{0}-h\left(x_{0}\right)\right)
$$

on H both lie on the function $x=x_{0}$, so

$$
-[P]=[\bar{P}]
$$

Semi-Reduced and Reduced Divisors

Every class in $\mathrm{Jac}_{H}(\bar{K})$ contains a divisor $\sum_{\text {finite }} m_{P}[P]$ such that

- all $m_{P}>0$
- if $P=\bar{P}$, then $m_{P}=1$

$$
\begin{array}{r}
(\text { replace }-[P] \text { by }[\bar{P}]) \\
(\text { as } 2[P]=0)
\end{array}
$$

- if $P \neq \bar{P}$, then only one of P, \bar{P} can appear in the sum

$$
(\text { as }[P]+[\bar{P}]=0)
$$

Such a divisor is semi-reduced. If $\sum m_{P} \leq g$, then it is reduced.
E.g. $g=2$: reduced divisors are of the form $[P]$ or $[P]+[Q]$.

Theorem

Every class in $\mathrm{Jac}_{H}(\bar{K})$ contains a unique reduced divisor.

For reduced D_{1}, D_{2}, the reduced divisor in the class $\left[D_{1}+D_{2}\right]$ is denoted $D_{1} \oplus D_{2}$.

An Example of Reduced Divisors

$D_{1}=(-2,1)+(0,1) \quad, \quad D_{2}=(2,1)+(3,-11)$

Inverses on Hyperelliptic Curves

The inverse of $D=P_{1}+P_{2}+\cdots P_{r}$ is $-D=\bar{P}_{1}+\bar{P}_{2}+\cdots \bar{P}_{r}$

$$
-(\bullet+\bullet)=(\bullet+\bullet)
$$

Addition on Genus 2 Curves

Addition on Genus 2 Curves

Addition on Genus 2 Curves

Addition on Genus 2 Curves

$(\bullet+\bullet)+(\bullet+\bullet)+(\bullet+\bullet)=0 \quad \Rightarrow \quad(\bullet+\bullet) \oplus(\bullet+\bullet)=(\bullet+\bullet)$

Addition on Genus 2 Curves

Motto: "Any complete collection of points on a function sums to zero."
To add and reduce two divisors $P_{1}+P_{2}$ and $Q_{1}+Q_{2}$ in genus 2:

- The four points $P_{1}, P_{2}, Q_{1}, Q_{2}$ lie on a unique function $y=v(x)$ with $\operatorname{deg}(v)=3$.
- This function intersects H in two more points R_{1} and R_{2} :
- The x-coordinates of R_{1} and R_{2} can be obtained by finding the remaining two roots of $v(x)^{2}+h(x) v(x)=f(x)$.
- The y-coordinates of R_{1} and R_{2} can be obtained by substituting the x-coordinates into $y=v(x)$.
- Since $\left(P_{1}+P_{2}\right)+\left(Q_{1}+Q_{2}\right)+\left(R_{1}+R_{2}\right)=0$, we have

$$
\left(P_{1}+P_{2}\right) \oplus\left(Q_{1}+Q_{2}\right)=\overline{R_{1}}+\overline{R_{2}} .
$$

Addition in Genus 2 - Example

Consider $H: y^{2}=f(x)$ with $f(x)=x^{5}-5 x^{3}+4 x+1$ over \mathbb{Q}.
To add \& reduce $(-2,1)+(0,1)$ and $(2,1)+(3,-11)$, proceed as follows:

- The unique degree 3 function through $(-2,1),(0,1),(2,1)$ and $(3,-11)$ is $y=v(x)$ with $v(x)=-(4 / 5) x^{3}+(16 / 5) x+1$.
- The equation $v(x)^{2}=f(x)$ becomes

$$
(x-(-2))(x-0)(x-2)(x-3)\left(16 x^{2}+23 x+5\right)=0
$$

- The roots of $16 x^{2}+23 x+5$ are $\frac{-23 \pm \sqrt{209}}{32}$.
- The corresponding y-coordinates are $\frac{-1333 \pm 115 \sqrt{209}}{2048}$. So

$$
\begin{aligned}
& (-2,1)+(0,1) \oplus(2,1)+(3,-11)= \\
& \left(\frac{-23+\sqrt{209}}{32}, \frac{1333-115 \sqrt{209}}{2048}\right)+\left(\frac{-23-\sqrt{209}}{32}, \frac{1333+115 \sqrt{209}}{2048}\right) .
\end{aligned}
$$

Hyperelliptic Addition in General

Let D_{1}, D_{2} be reduced divisors on $H: y^{2}+h(x) y=f(x)$.
First form the semi-reduced sum of D_{1} and D_{2}, obtaining $D=\sum_{i=1}^{r}\left[P_{i}\right]$ Now iterate over D as follows, until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.
- $w(x)=v^{2}-h v-f$ is a polynomial of degree $\max \{2 r-2,2 g+1\}$. r of the roots of $w(x)$ are the x-coordinates of the P_{i}.
- If $r \geq g+2$, then $\operatorname{deg}(w)=2 r-2$, yielding $r-2$ further roots. If $r=g+1$, then $\operatorname{deg}(w)=2 g+1$, yielding g further roots.
- Substitute these new roots into $y=v(x)$ to obtain $\max \{r-2, g\}$ new points on H. Replace D by the new divisor thus obtained.

Since $r \leq 2 g$ at the start, $D_{1} \oplus D_{2}$ is obtained after at most $\lceil g / 2\rceil$ steps.

Mumford Representation

Let $D=\sum_{i=1}^{r} m_{i}\left[P_{i}\right]$ be a semi-reduced divisor, $P_{i}=\left(x_{i}, y_{i}\right)$
The Mumford representation of D is a pair of polynomials $(u(x), v(x))$ that uniquely determines D :
$u(x)$ captures all the x-coordinates with multiplicities; $y=v(x)$ is the interpolation function through all the P_{i} (as before).

Formally:

$$
\begin{aligned}
& u(x)=\prod_{i=1}^{r}\left(x-x_{i}\right)^{m_{i}} \\
& \left(\frac{d}{d x}\right)^{j}\left[v(x)^{2}+v(x) h(x)-f(x)\right]_{x=x_{i}}=0 \quad\left(0 \leq j \leq m_{i}-1\right)
\end{aligned}
$$

Properties and Examples

Properties:

- $u\left(x_{i}\right)=0$ and $v\left(x_{i}\right)=y_{i}$ with multiplicity m_{i} for $1 \leq i \leq r$;
- $u(x)$ is monic and divides $v(x)^{2}+h(x) v(x)-f(x)$
- D uniquely determines $u(x)$ and $v(x) \bmod u(x)$;
- Any pair of polynomials $u(x), v(x) \in \bar{K}[x]$ with $u(x)$ monic and dividing $v(x)^{2}+h(x) v(x)-f(x)$ determines a semi-reduced divisor.

Examples:

- If $D=\left[\left(x_{0}, y_{0}\right)\right]$ is a point, then $u(x)=x-x_{0}$ and $v(x)=y_{0}$.
- If $D=\left[\left(x_{1}, y_{1}\right)\right] \oplus\left[\left(x_{2}, y_{2}\right)\right]$, then

$$
\begin{aligned}
& u(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& y=v(x) \text { is the line through }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Semi-Reduced Sums Via Mumford Reps

Let $D_{1}=\left(u_{1}, v_{1}\right), D_{2}=\left(u_{2}, v_{2}\right)$.
Simplest case: for any $[P]$ occurring in $D_{1},[\bar{P}]$ doesn't occur in D_{2} and vice versa. Then $D_{1}+D_{2}=(u, v)$ is semi-reduced and

$$
u=u_{1} u_{2}, \quad v= \begin{cases}v_{1} & \left(\bmod u_{1}\right) \\ v_{2} & \left(\bmod u_{2}\right)\end{cases}
$$

In general: suppose $P=\left(x_{0}, y_{0}\right)$ occurs in D_{1} and \bar{P} occurs in D_{2}. Then $u_{1}\left(x_{0}\right)=u_{2}\left(x_{0}\right)=0$ and $v_{1}\left(x_{0}\right)=y_{0}=-v_{2}\left(x_{0}\right)-h\left(x_{0}\right)$, so $x-x_{0}$ divides $u_{1}(x), u_{2}(x), v_{1}(x)+v_{2}(x)+h(x)$.

$$
\begin{gathered}
d=\operatorname{gcd}\left(u_{1}, u_{2}, v_{1}+v_{2}+h\right)=s_{1} u_{1}+s_{2} u_{2}+s_{3}\left(v_{1}+v_{2}+h\right) . \\
u=u_{1} u_{2} / d^{2} . \\
v \equiv \frac{1}{d}\left(s_{1} u_{1} v_{2}+s_{2} u_{2} v_{1}+s_{3}\left(v_{1} v_{2}+f\right)\right)(\bmod u)
\end{gathered}
$$

(In the simplest case above, $d=1$ and $s_{3}=0$)

Reduction Via Mumford Reps

Let $D=(u, v)$ be a semi-reduced divisor on $H: y^{2}+h(x) y=f(x)$.
While $\operatorname{deg}(u)>g$ do
// Replace the x-coordinates of the points in D by those of the other intersection points of H with v :

$$
u \leftarrow\left(f-v h-v^{2}\right) / u
$$

// Replace the new points by their opposites:

$$
v \leftarrow(-v-h)(\bmod u) .
$$

Mumford Arithmetic - Example

Consider again $H: y^{2}=f(x)$ with $f(x)=x^{5}-5 x^{3}+4 x+1$ over \mathbb{Q}.
Compute $D_{1} \oplus D_{2}$ with $D_{1}=(-2,1)+(0,1)$ and $D_{2}=(2,1)+(3,-11)$:
Mumford rep of $D_{1}: u_{1}(x)=x^{2}+2 x, v_{1}(x)=1$.
Mumford rep of $D_{2}: u_{2}(x)=x^{2}-5 x+6, v_{2}(x)=-12 x+25$.

$$
\begin{aligned}
& u(x)=u_{1}(x) u_{2}(x)=x^{4}-3 x^{3}-4 x^{2}+12 x \\
& v(x)=-(4 / 5) x^{3}+(16 / 5) x+1 \\
& u(x) \leftarrow\left(f(x)-v(x)^{2}\right) / u(x)=16 x^{2}+23 x+5 \\
& v \leftarrow-v(\bmod u)=(16 x-23) / 320
\end{aligned}
$$

Mumford rep of $D_{1} \oplus D_{2}=\left(\frac{-23+\sqrt{209}}{32}, \frac{1333-115 \sqrt{209}}{2048}\right)+\left(\frac{-23-\sqrt{209}}{32}, \frac{1333+115 \sqrt{209}}{2048}\right)$:

$$
u(x)=16 x^{2}+23 x+5, v(x)=(16 x-23) / 320
$$

Divisors defined over K

Let $\phi \in \operatorname{Gal}(\bar{K} / K) \quad\left(\right.$ for $K=\mathbb{F}_{q}$, think of Frobenius $\left.\phi(\alpha)=\alpha^{q}\right)$.
ϕ acts on points via their coordinates, and on divisors via their points.
A divisor D is defined over K if $\phi(D)=D$ for all $\phi \in \operatorname{Gal}(\bar{K} / K)$.
Example: The divisor
$D=\left(\frac{-23+\sqrt{209}}{32}, \frac{1333-115 \sqrt{209}}{2048}\right)+\left(\frac{-23-\sqrt{209}}{32}, \frac{1333+115 \sqrt{209}}{2048}\right)$
is defined over \mathbb{Q} (invariant under automorphism $\sqrt{209} \mapsto-\sqrt{209}$).
Theorem
$D=(u, v)$ is defined over K if and only if $u(x), v(x) \in K[x]$.

Corollary

If K is a finite field, then $\operatorname{Jac}(H)$ is finite.

Some Other Elliptic Curve Models

- Hessians: $x^{3}+y^{3}-3 d x y=1$
- Edwards models: $x^{2}+y^{2}=c^{2}\left(1+d x^{2} y^{2}\right)(q$ odd) and variations

$x^{3}+y^{3}=1$

$$
x^{2}+y^{2}=10\left(1-x^{2} y^{2}\right)
$$

Even Degree Models

$y^{2}+h(x) y=f(x), \operatorname{deg}(f)=2 g+2, \quad \operatorname{deg}(h)=g+1$ if $\operatorname{char}(K)=2$.

$$
y^{2}=x^{4}-6 x^{2}+x+6
$$

$$
(g=1)
$$

$$
y^{2}=x^{6}-13 x^{4}+44 x^{2}-4 x-1
$$

$$
(g=2)
$$

Properties of Even Degree Models

- More general and plentiful than odd degree hyperelliptic curves:
- can always transform an odd to even degree model over K, but the reverse direction may require an extension of K.
- Two points at infinity (∞ and $\bar{\infty}$).
- Divisor Representation: $\sum_{i=1}^{r} P_{i}-r \infty+n(\bar{\infty}-\infty), \quad r \leq g$.
- No restrictions on n : many reduced divisors in each class $\left(\approx q^{g}\right)$
- $n=0$: infrastructures (misses a few divisor classes)
- $n \approx g$: unique representatives (Paulus-Rück 1999)
- $n \approx\lceil g / 2\rceil$: balanced representation, unique and much better for computation (Galbraith-Harrison-Mireles Morales 2008)
- The DLP's in all these settings are polynomially equivalent.

Conclusion and Work in Progress

- Genus 1 and 2, q prime or $q=2^{n}$: efficient and secure for DLP based crypto. Genus 3 might also be OK.
- Explicit formulas reduce the polynomial arithmetic to arithmetic in \mathbb{F}_{q}. Odd degree: LOTS of literature on genus 2, a bit on genus 3 and 4; Even degree: reasonably developed for genus 2 , work on genus 3 in progress.
- Other coordinates (e.g. projective coordinates) can be more efficient. They avoid inversions in \mathbb{F}_{q}, at the expense of redundancy. Oftentimes mixed coordinates are best.
- For genus 1, use Edwards models - more efficient, unified formulas. No higher genus Edwards analogue is known.
- For genus 2 and odd degree, Gaudry's Kummer surface arithmetic is fastest, but doesn't work for all curves.
- Work on arbitrary genus is ongoing.

Thank you!

Questions?

http://voltage.typepad.com/superconductor/2011/09/a.projective-imaginary-hyperelliptic-curve.html

