Hyperelliptic Curve Arithmetic

Renate Scheidler

UNIVERSITY OF

CALGARY

12t" International Conference on Finite Fields and Their
Applications
July 16, 2015



UNIVERSITY OF

Uses of Jacobian Arithmetic @ CALGARY

o Number Theory
» Invariant computation (class group/Jacobian, regulator, ...)
» Function field construction
» Function field tabulation

(]

Geometry
» Algebraic curves

Cryptography
» Discrete log based crypto
» Pairing based crypto

Coding Theory?
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Discrete Logarithm Based Cryptography W CALGARY

Groups that are used for discrete log based crypto should satisfy the
following properties:

For practicality:
o Compact group elements

o Fast group operation

For security:
o Large order

o Cyclic or almost cyclic (plus some other restrictions on the order)
o Intractable discrete logarithm problem (DLP)
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Suitable Groups W CALGARY

Proposed Groups:
o G =TI (Diffie-Hellman 1976)
o Elliptic curves (Koblitz 1985, Miller 1985)
@ Hyperelliptic curves (Koblitz 1989)

Fastest generic DLP algorithms: O(/|G|) group operations
@ Best known for elliptic (i.e. genus 1) and genus 2 hyperelliptic curves

o Faster algorithms known for finite fields and higher genus curves

For curves of genus g over a finite field Fq: |G| ~ g8 as g — oo.
If we want 80 bits of security (i.e. \/q& ~ 2%9):
0o g=1: g~ 2160
o g =2: g~ 2% (slower group arithmetic but faster field arithmetic)
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Elliptic Curves W CALGARY

Let K be a field (in crypto, K = F, with g prime or g = 2")
Weierstral3 equation over K:

E : y?>+ aixy + a3y = x> + aox® + asx + ap (*)
with a1, as, a3, a4, a6 € K

Elliptic curve: WeierstraB equation & non-singularity condition:
there are no simultaneous solutions to (x) and

2y +aix+a = 0
aily = 3x2-|-2azx-|-a4

Non-singularity <= A # 0 where A is the discriminant of E
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An Example &) CALGARY

E:y?=x3—5xover Q

10+

)
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Elliptic Curves, char(K) # 2, 3 W CALGARY

For char(K) # 2,3, the variable transformations
y =y — (aix + a3)/2, then x — x — (a3 + 4ay)/12
yield an elliptic curve in short WeierstraB3 form:
E . y’=x+Ax+B (A, B € K)
Discriminant A = 4A3 42782 #£ 0 (cubic in x has distinct roots)
For any field L with K C L C K:
E(L) = {(x0,y0) € Lx L | y?=x3+ Axo+ B} U {00}

set of L-rational points on E.
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An Example

UNIVERSITY OF

CALGARY

Pl = (—1,2), P2 = (0,0) S E(@)

P

-10+
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The Mysterious Point at Infinity W CALGARY

In E, replace x by x/z, y by y/z, then multiply by z*:

Eproj - yzz =x3 + Axz? + BZ®

Points on Epo;:

[x:y:z]#[0:0:0], normalized so the last non-zero entry is 1.

Affine Points Projective Points

(x,y) < [x:y:1]
oo < [0:1:0]
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Arithmetic on E

Goal: Make E(K) into an additive (Abelian) group:
o The identity is the point at infinity.
o The inverse of a point P = (xp, yo) is its opposite P = (xg, —yo)'

Ecrue for odd characteristic only; in general, the opposite of a point P = (xo, y0) is
P = (Xo7 —Yo — aiXo — 33).

By Bezout's Theorem, any line intersects E in three points.
o Need to count multiplicities;
o If one of the points is oo, the line is “vertical”

ftrue for odd characteristic only; in general, the line goes through P and P.

Motto: “Any three collinear points on E sum to zero (i.e. 00).”

Also known as Chord & Tangent Addition Law.
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Inverses on Elliptic Curves W CALGARY
10+
AV S T S A
10l

—(e) =7
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rses on Elliptic VCALGARY
: \2\_41 S N A A
ot
e +eoe+4+00=0 = —(e) = o
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Addition on Elliptic Curves W CALGARY
AV S T\ S S A
1o}
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Addition on Elliptic Curves W CALGARY
AV AN

o} o +e0=0
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ition on Elliptic Curves

NIVERSITY OF

v W CALGARY
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Doubling on Elliptic Curves W CALGARY

2 X e=7
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Doubling on Elliptic Curves ¥ CALGARY

10+

2xe+e=0 = 2Xe=oe
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Arithmetic on Short WeierstraB Form

v Y CALGARY
Let

P1 = (x1,y1), P2 = (x2,y2) (P1 # 00, Py # 00, Py + Py # 00) .

Then
—P (—x1,¥1)
P+ P, = (Az — X1 — X2, —)\3 + )\(Xl + X2) - M)
where
Y2—n if Py # Py Y1Xo — ya2X1 if Py £ P
X2 — X1 X2 — X1
A= 24 A "= A B
3 — 2
KA e p =P DEAH2E e p p
2y1 2y
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Beyond Elliptic Curves @ CALGARY

Recall WeierstraB equation:

E y2 + (aix+ a3)y = x3 4 32X2 + asx + ag
——
h(x) F(x)

deg(f)=3=2-1+1 odd
deg(h) =1 for char(K) = 2; h =0 for char(K) # 2

Generalization: deg(f) =2g+ 1, deg(h) <g
g is the genus of the curve

g = 1: elliptic curves
g = 2: deg(f) =5, deg(h) < 2 (always hyperelliptic).
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Hyperelliptic Curves @/ CALGARY

Hyperelliptic curve of genus g over K:
H : y?+ h(x)y = f(x)

h(x), f(x) € K[x]
f(x) monic and deg(f) =2g + 1 is odd
deg(h) < g if char(K) = 2; h(x) = 0 if char(K) # 2

non-singularity

e 6 o6 o

char(K) # 2. y? = f(x), f(x) monic, of odd degree, square-free

Set of L-rational points on H (K C L C K):

H(L) = {(x0,y0) € Lx L | y§ + h(x0)y = f(x0)} U {00}
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An Example

H:y2:x5—5x3+4x—1over(@, genus g =2

10+

ETES

? u N A \3
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Divisors @ CALGARY

@ Group of divisors on H:
Divy(K) = (H(K)) = {Z mpP | mp € Z, P € H(R)}
finite
o Subgroup of Divy(K) of degree zero divisors on H:

Div,(K) = ([P] | P € H(K)) = {Z mp[P] | mp € Z, P € H(V)}

finite

where [P] = P — o0
@ Subgroup of Div?_,(?) of principal divisors on H:

Priny(K) = {Z vp(Q)[P] | @ € K(x,y), P € H(R)}

finite
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The Jacobian §/ CALGARY

Jacobian of H:  Jacy(K) = DivY,(K)/Priny(K)

Motto: “Any complete collection of points on a function sums to zero."
H(K) — Jacy(K) via P+~ [P]

For elliptic curves: E(K) = Jacg(K) (= E(K) is a group)

Identity: [oo] = 0o — o0

Inverses: The points
P = (x0,%) and P = (x0,—y0 — h(x0))
on H both lie on the function x = xg, so

~[P] = [P
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Semi-Reduced and Reduced Divisors W CALGARY
Every class in Jacy(K) contains a divisor Z mp[P] such that
finite
e all mp >0 (replace —[P] by [ﬁ])
o if P=P, then mp=1 (as 2[P] = 0)
o if P # P, then only one of P, P
can appear in the sum (as [P] +[P] = 0)

Such a divisor is semi-reduced. If >° mp < g, then it is reduced.

E.g. g = 2: reduced divisors are of the form [P] or [P] + [Q].

Every class in Jacy(K) contains a unique reduced divisor. I

For reduced Dy, D5, the reduced divisor in the class [D; + D] is denoted
D1 @ Ds.
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An Example of Reduced Divisors W CALGARY
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Inverses on Hyperelliptic Curves @ CALGARY

ANl D =P, +P,+---P,BY-D=P;+Pr+---P,

(ot o) =(o+0)
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Addition on Genus 2 Curves W CALGARY

Renate Scheidler (Calgary) Hyperelliptic Curve Arithmetic Fq12 — July 16, 2015 27 / 44



UNIVERSITY OF

Addition on Genus 2 Curves W CALGARY
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Addition on Genus 2 Curves W CALGARY

(e +e)+(e+e)+(o+e)=0
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Addition on Genus 2 Curves W CALGARY

(o4 8)+ (s 0) (o +
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&) CALGARY

Addition on Genus 2 Curves

Motto: “Any complete collection of points on a function sums to zero."

To add and reduce two divisors P; + P> and Q1 + Q> in genus 2:
@ The four points Py, P2, Q1, Q> lie on a unique function y = v(x)
with deg(v) = 3.

@ This function intersects H in two more points R and R»:
» The x-coordinates of R; and R» can be obtained by finding the
remaining two roots of v(x)% + h(x)v(x) = f(x).
» The y-coordinates of R; and R» can be obtained by substituting
the x-coordinates into y = v(x).

o Since (P1+ P2) + (Q1 + @) + (R1 + R2) =0, we have

(PL+P)d(@Q1+Q)=R+Ry.
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Addition in Genus 2 — Example @) CALGARY
Consider H : y? = f(x) with f(x) = x5 — 5x3 + 4x + 1 over Q.
To add & reduce (—2,1) +(0,1) and (2,1) + (3, —11), proceed as follows:

@ The unique degree 3 function through (—2,1), (0,1), (2,1) and
(3, —11) is y = v(x) with v(x) = —(4/5)x3 + (16/5)x + 1.

o The equation v(x)? = f(x) becomes

(x = (—2))(x = 0)(x — 2)(x — 3)(16x> +23x +5) =0 .

o The roots of 16x% + 23x + 5 are 332\/@
T -1 £ 1152
o The corresponding y-coordinates are 333 20485\/@. So

(—2,1)+(0,1) ® (2,1)+(3,-11) =
—23 4+ /209 1333 — 1151209 L (=B= V209 1333 + 1151/209
32 ’ 2048 32 ’ 2048 '
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Hyperelliptic Addition in General W CALGARY

Let D1, D> be reduced divisors on H : y? + h(x)y = f(x).

.

First form the semi-reduced sum of D; and D,, obtaining D = Z[P,-]
i=1

Now iterate over D as follows, until r < g:

@ The r points P; all lie on a curve y = v(x) with deg(v) = r — 1.

o w(x) = v? — hv — f is a polynomial of degree max{2r — 2, 2g + 1}.
r of the roots of w(x) are the x-coordinates of the P;.

o If r > g+ 2, then deg(w) = 2r — 2, yielding r — 2 further roots.
If r =g + 1, then deg(w) = 2g + 1, yielding g further roots.

o Substitute these new roots into y = v(x) to obtain max{r —2,g}
new points on H. Replace D by the new divisor thus obtained.

Since r < 2g at the start, D; & D> is obtained after at most [g/2] steps.

Renate Scheidler (Calgary)
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Mumford Representation W CALGARY

Let D = Z m;[P;] be a semi-reduced divisor, P; = (x;, y;)
i=1

The Mumford representation of D is a pair of polynomials (u(x), v(x))
that uniquely determines D:

u(x) captures all the x-coordinates with multiplicities;

y = v(x) is the interpolation function through all the P; (as before).

Formally:
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) CALGARY

Properties and Examples

Properties:
o u(x;) =0 and v(x;) = y; with multiplicity m; for 1 < i <r;
o u(x) is monic and divides v(x)? + h(x)v(x) — f(x)
@ D uniquely determines u(x) and v(x) mod u(x);

o Any pair of polynomials u(x), v(x) € K[x] with u(x) monic and
dividing v(x)? + h(x)v(x) — f(x) determines a semi-reduced divisor.

Examples:
o If D = [(x0,0)] is a point, then u(x) = x — xp and v(x) = yo.

o If D =[(x1,y1)] ® [(x2, y2)], then

u(x) = (x = x1)(x — x2),
y = v(x) is the line through (x1,y1) and (x2, y2).
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Semi-Reduced Sums Via Mumford Reps & CALGARY
Let Dy = (Ul, V1), D> = (u2, V2).

Simplest case: for any [P] occurring in Dy, [P] doesn't occur in D, and
vice versa. Then D; + Dy = (u,v) is semi-reduced and

vi  (mod u1) ,
u=uluy , V=
Vo (mod UZ) .

In general: suppose P = (xo, yo) occurs in Dy and P occurs in Ds.

Then u1(xp) = wa(x0) = 0 and vi(xp) = yo = —va(x0) — h(xp), so
x — xp divides u1(x), ua(x), vi(x)+ va(x) + h(x).

d = ged(ur, ua, vi + vo + h) = syur + spun + s3(vi + va + h).
u = upup/d?.

vV =

Q|+~

(51U1V2 —+ Sour vy + S3(V1V2 + f)) (mod u)

(In the simplest case above, d =1 and s3 = 0)
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Reduction Via Mumford Reps @ CALGARY

Let D = (u, v) be a semi-reduced divisor on H : y? + h(x)y = f(x).

While deg(u) > g do

// Replace the x-coordinates of the points in D by those of the other
intersection points of H with v:

us+ (F—vh—v2)/u .

// Replace the new points by their opposites:
v« (—v—nh) (mod u) .
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Mumford Arithmetic — Example W CALGARY

Consider again H : y? = f(x) with f(x) = x® — 5x3 + 4x + 1 over Q.
Compute Dy & Dy with Dy = (—2,1) +(0,1) and D> = (2,1) + (3, —11):

Mumford rep of Di: ui(x) = x? + 2x, vi(x) = 1.
Mumford rep of Dy: ua(x) = x? — 5x + 6, va(x) = —12x + 25,

u(x) = ur(x)ua(x) = x* — 3x3 — 4x% + 12x ;
v(x) = —(4/5)x> + (16/5)x + 1 ;
u(x) < (f(x) = v(x)?)/u(x) = 16x> + 23x + 5 ;

v < —v (mod u) = (16x —23)/320 ;

Mumford rep of Dy @ Ds = <723 :2\/2091 1333 720141:\/209> . (723 ;2\/2097 1333 +2014185\/209>:

u(x) = 16x? +23x + 5, v(x) = (16x — 23)/320.
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Divisors defined over K W CALGARY
Let ¢ € Gal(K/K) (for K = Fy, think of Frobenius ¢(a) = a9).

¢ acts on points via their coordinates, and on divisors via their points.

A divisor D is defined over K if ¢(D) = D for all ¢ € Gal(K/K).

Example: The divisor

H_ —234++/209 1333 — 1151/209 N —23 — /209 1333 4 115+/209
o 32 ’ 2048 32 ’ 2048

is defined over Q (invariant under automorphism /209 — —+/209).

D = (u,v) is defined over K if and only if u(x), v(x) € K[x].

If K is a finite field, then Jac(H) is finite. l
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Some Other Elliptic Curve Models @) CALGARY

o Hessians: x3 + y3 — 3dxy =1
o Edwards models: x? + y? = c?(1 + dx?y?) (q odd) and variations
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Even Degree Models W CALGARY

2+ h(x)y = f(x), deg(f) =2g+2, deg(h) =g +1if char(K) = 2.

/‘*\ / )
N

\

]

]
)

y2=x*—6x>+x+6 y2 = x5 — 13x* + 44x2 — 4x — 1
(g=1) (g =2)
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Properties of Even Degree Models @ CALGARY

o More general and plentiful than odd degree hyperelliptic curves:
» can always transform an odd to even degree model over K, but
the reverse direction may require an extension of K.

@ Two points at infinity (co and 30).

r
o Divisor Representation: Z Pi — roo 4+ n(&6 — ), r < g.
» No restrictions on nI: :nany reduced divisors in each class (=~ g#)
» n = 0: infrastructures (misses a few divisor classes)
» n~ g: unique representatives (Paulus-Riick 1999)
» n~ [g/2]: balanced representation, unique and much better for
computation (Galbraith-Harrison-Mireles Morales 2008)

@ The DLP’s in all these settings are polynomially equivalent.
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Conclusion and Work in Progress W CALGARY

@ Genus 1 and 2, g prime or g = 2": efficient and secure for DLP based
crypto. Genus 3 might also be OK.

@ Explicit formulas reduce the polynomial arithmetic to arithmetic in Fg.
Odd degree: LOTS of literature on genus 2, a bit on genus 3 and 4;
Even degree: reasonably developed for genus 2, work on genus 3 in

progress.

@ Other coordinates (e.g. projective coordinates) can be more efficient.
They avoid inversions in [F, at the expense of redundancy.
Oftentimes mixed coordinates are best.

o For genus 1, use Edwards models — more efficient, unified formulas.
No higher genus Edwards analogue is known.

o For genus 2 and odd degree, Gaudry's Kummer surface arithmetic is
fastest, but doesn't work for all curves.

o Work on arbitrary genus is ongoing.
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