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Motivating question

Question (Chowla, 1959): If f (x) ∈ Fq[x ] has degree n, where q is much
bigger than n, then what can we say about #f (Fq)?

Remarks:
1) The question would not be interesting without the hypothesis on q,
since every function Fq → Fq is induced by some polynomial.

2) Beyond just asking about the size of the image, we can ask about the
statistics of the function f : Fq → Fq: approximately how many elements
of Fq have exactly one Fq-preimage, how many have two, and so on?

3) We can also ask the analogous question about rational functions, or
about the function f : C (Fq)→ D(Fq) induced by a morphism f : C → D
between curves over Fq.

The goal of this talk is to answer the questions above. In particular, I will
describe all polynomials which induce functions Fp → Fp whose statistics
do not resemble those of a random function.
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Low-degree polynomials

Let f (x) ∈ Fq[x ] have degree n.

1 If n = 1 then #f (Fq) = q.

2 If n = 2 and q is odd then #f (Fq) =
q + 1

2
.

3 If n = 3 then #f (Fq) ∈ {q
3

+ ε,
2q

3
+ ε, q} where |ε| < 1.

4 If n = 4 and q is odd then

#f (Fq) ∈ {q
4

+ ε,
q

2
+ ε,

3q

8
+ ε,

5q

8
+ O(

√
q)} where |ε| < 2.

Sources: Kantor, von Sterneck, Davenport, McCann–Williams, ...
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Prime degree

Theorem (Yang–Z): For any prime n, if f (x) ∈ Fq[x ] has degree n then
one of these holds after composing f (x) on both sides with suitable
degree-one polynomials in Fq[x ]:

1 #f (Fq) = On(
√
q) + q

(
1− 1

2! + 1
3! − · · ·+ (−1)n−1 1

n!

)
2 #f (Fq) = On(

√
q) + q

(
1− 1

2! + 1
3! − · · ·+ (−1)n−1 1

(n−2)!

)
3 #f (Fq) = On(

√
q) + q

(
1− 1

2! + 1
3! − · · ·+ (−1)n−1 1

(n−2)! + 2
(n−1)!

)
4 f (x) = xn and #f (Fq) ≈ q

gcd(n, q − 1)

5 f (x) = Dn(x , a) and #f (Fq) ≈ 1

2

( q

gcd(n, q − 1)
+

q

gcd(n, q + 1)

)
6 f (x) = x(x

n−1
d − a)d and #f (Fq) ≈ q or q

n

(
n − n−1

d

)
, where n | q

7 n is either 11 or 23 or 1 + r + r2 + · · ·+ rk for some prime power r
and some k > 0.
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Prime degree, continued

This result says that polynomials of prime degree either take roughly
q(1− 1

e ) values, or are nice functions like xn or additive polynomials, or
have degree 11, 23, or 1 + r + r2 + · · ·+ rk .

1) We can describe the pairs (q, n) for which each case on this list occurs.

2) We know the approximate mapping statistics in each case.

3) The exceptional degrees yield other polynomials, and we have formulas
for the approximate image size and mappping statistics there too.

4) We proved similar results for rational functions, and for morphisms of
curves over Fq (but always assuming the degree is prime).

Moral: we know all the different types of functions induced by
prime-degree mappings.
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Proof sketch

For f (x) ∈ Fq[x ] with f ′(x) 6= 0, let t be transcendental over Fq, and let
Ω be the splitting field of f (x)− t over Fq(t). Let A := Gal(Ω/Fq(t)) and
G := Gal(Ω.Fq/Fq(t)), viewed as groups of permutations of the roots of
f (x)− t, and let x1 be one such root. For any c ∈ Fq which is not a
critical value of f (x), the number of Fq-preimages of c equals the number
of degree-one places of Fq(x1) containing t − c, which in turn equals the
number of fixed points of the decomposition group of any place of Ω
containing t − c (van der Waerden 1935). By the function field analogue
of Chebotarev’s density theorem, each subgroup of A which could plausibly
occur as such a decomposition group does indeed occur, and for roughly
the expected number of values c. Hence the approximate statistics of the
function f : Fq → Fq are determined by A and G . But A and G are
transitive subgroups of Sn where n := deg(f ) is prime, so they are on this
short list of plausible groups:
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Transitive subgroups of Sn for prime n

If n is prime then any transitive subgroup of Sn is either

1 Sn or An

2 a group of permutations of Fn defined by degree-one polynomials

3 a group between PGLm(q) and Aut(PGLm(q)), where
n = (qm − 1)/(q − 1) and q is a prime power

4 M11 or PSL2(11) with n = 11, or M23 with n = 23.

The groups in (2) lead to xn and Dn(x , a) if n - q, and to x(x
n−1
d − a)d if

n | q. The groups in (3) occur for polynomials of degree
1 + q + q2 + · · ·+ qm−1.
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Indecomposable polynomials of composite degree

Theorem: For any n > 31, if f (x) ∈ Fp[x ] is indecomposable of degree n
where p > n then one of these holds:

1 #f (Fp) = On(
√
p) + p

(
1− 1

2! + 1
3! − · · ·+ (−1)n−1 1

n!

)
2 #f (Fp) = On(

√
p) + p

(
1− 1

2! + 1
3! − · · ·+ (−1)n−1 1

(n−2)!

)
3 #f (Fp) = On(

√
p) + p

(
1− 1

2! + 1
3! − · · ·+ (−1)n−1 1

(n−2)! + 2
(n−1)!

)
4 f (x) is a change of variables of xn or Dn(x , a).

Proof sketch: p > n implies tame ramification and indecomposability over
Fp, so by Grothendieck’s lifting theorem there is an indecomposable
polynomial over C having the same ramification type and geometric
monodromy group as does f , and then Feit/Müller determined all
candidate groups.
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Indecomposable rational functions of composite degree

Theorem (Neftin–Z): For any sufficiently large n, any prime p with p > n,
and any f ∈ Fp(x) with deg(f ) = n which is indecomposable over Fp, one
of these holds:

1 #f (Fp)/p = c + On(1/
√
p) for some c among

1− 1/2! + 1/3!− · · ·+ (−1)n−1/n!,
1− 1/2! + 1/3!− · · ·+ (−1)n−3/(n − 2)!,
1− 1/2! + 1/3!− · · ·+ (−1)n−3/(n − 2)! + 2/(n − 1)!

2 n = d2 or n = d(d − 1)/2 for some integer d

3 n is prime and f is a composition factor of xm, Tm(x), or a
coordinate projection of an elliptic curve isogeny.

A similar result holds for #f (X (Fq)) for any nonconstant, tamely ramified,
geometrically indecomposable morphism f : X → Y of curves over Fq

which are smooth, projective, and geometrically irreducible, so long as
deg(f ) is sufficiently large compared to the genus of X .
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Monodromy groups

As before, van der Waerden/Chebotarev reduce this to determining the
possible Galois groups of (the numerator of) f (x)− t over Fp(t) and
Fp(t), and by Grothendieck the latter group is Gal(f̂ (x)− t,C(t)) for
some indecomposable f̂ ∈ C(x) with deg(f̂ ) = deg(f ).

Theorem (Neftin–Z): If f (x) ∈ C(x) is indecomposable and n := deg(f ) is
sufficiently large, then G := Gal(f (x)− t, C(t)) satisfies one of the
following:

1 G ∈ {An, Sn}
2 n = d2 and (Ad)2 ≤ G ≤ (Sd)2.S2
3 n = d(d − 1)/2 and G ∈ {Ad , Sd}
4 n = pi with p prime and i ≤ 2, where #G = nk with k ≤ 6.

Also we know all ramification possibilities in cases (2)–(4). This builds on
results of Zariski, Guralnick, Thompson, Aschbacher, Shih, Neubauer,
Liebeck, Saxl, Shalev, Magaard, ..., and resolves three conjectures of
Guralnick and Shareshian.
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Proof for arbitrary degrees, 1

If M/K is a separable degree-n field extension with no intermediate fields,
then the Galois group G of (the Galois closure of) M/K satisfies either

1 Lt ≤ G ≤ Aut(Lt) = Aut(L)t .St for some nonabelian simple L and
some t ≥ 1, or

2 C t
p ≤ G ≤ AGLt(p) for some prime p and some t ≥ 1.

In case (2), and also case (1) when L is not Ad , every nonidentity element
of G has at most 2n/3 fixed points. Based on this, one can determine all
possibilities consistent with Riemann–Hurwitz in case both M and K are
genus-zero function fields.

This approach does not work when L = Ad , since e.g. if n = d(d − 1)/2
and G = Sd then a 2-cycle has roughly n −

√
8n fixed points. Partial

results in this case were obtained by Guralnick–Neubauer and
Guralnick–Shareshian.
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Proof for arbitrary degree, 2

Let f (x) ∈ C(x) be an indecomposable degree-n rational function with n
sufficiently large, and suppose that the Galois group G of the Galois
closure of C(x)/C(f (x)) satisfies At

d ≤ G ≤ Aut(At
d) with d 6= n. To

illustrate the approach, assume t = 1, so that G ∈ {Ad ,Sd}.
Following Guralnick–Shareshian, we use the character theory of G
(and the classification of 3-transitive groups) to reduce to studying a
few special permutation actions of G .
The hardest case is when n = d(d − 1)/2. Here (say for G = Sd) the
inclusion Sd−1 ⊂ Sd corresponds to an extension L/K where
K = C(f (x)), and C(x) is the quotient of M := (L⊗K L)/(Diagonal)
by the automorphism interchanging the components.
Our key idea is to relate C(x) to L by studying M/C(x) and M/L.
We exploit this correspondence via Castelnuovo’s genus inequality,
Riemann–Hurwitz, and the crucial fact that there are very few
possibilities for the ramification in L/K over a single point which are
consistent with M having genus O(n).
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Subfield value sets

The same approach will work for the problem of determining
#(Fq ∩ f (Fqr )) for f (x) ∈ Fqr (x).

Let t be transcendental over Fq, let f (x1) = t, and let Ω be the Galois
closure of Fqr (x1)/Fq(t).

The subfield value set can be counted in terms of decomposition groups in
Ω/Fq(t), so one can give strong conclusions whenever q is large compared
to deg(f ). Nobody has written out this type of result; the subject is just
waiting for someone to do so!

Note: the reason why there are simple formulas when f (x) is xn or
Dn(x , a) or a (sub)additive polynomial or a Rédei function is that in these
cases the Galois group of f (x)− t is very small, while also Ω has genus
zero (which means that the error term in the Chebotarev estimate is On(1)
rather than On(

√
q)). These polynomials behave much more nicely than

all others.
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Summary

There are only a few possibilities for the mapping statistics of f : Fq → Fq,
up to an error term of Odeg(f )(

√
q), in each of the following situations:

1 f (x) ∈ Fq[x ] (or Fq(x)) has prime degree.

2 f (x) ∈ Fp[x ] is indecomposable and p > deg(f ).

3 f (x) ∈ Fp(x) is indecomposable over Fp, where p > deg(f ).

Hence the main obstruction causing a polynomial (or rational function) to
behave non-randomly is decomposability.

Take-home message: Group theory can be extremely useful for resolving
questions about fields or questions about polynomials.
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