Evaluation of carotid wave intensity in firefighters following firefighting

Huimin Yan · Christopher A. Fahs · Sushant Ranadive · Lindy M. Rosson · Abbi D. Lane · Stamatis Agiovlasitis · George Echols · Denise Smith · Gavin P. Horn · Thomas Rowland · Bo Fernhall

Received: 2 May 2011/Accepted: 19 September 2011/Published online: 29 October 2011
© Springer-Verlag 2011

Abstract Sudden cardiac events are the leading cause of line-of-duty firefighter deaths, but little information exists elucidating the physiologic responses. Wave intensity (WI) is a new hemodynamic index that provides information about the dynamic behavior of the heart and the vascular system and their interaction. The larger first peak wave (W1) occurs during early systole and is associated with cardiac contractility. The second smaller peak (W2) follows a period of relatively little net wave (NA) production and may be caused by reflected waves from the brain. This study aimed at determining arterial WI changes in response to live firefighting activities. We examined the WI of 39 firefighters (2 females) with a mean age of 28 ± 1 years and BMI of 26.6 ± 0.7 kg m⁻² at rest, and immediately after 3 h of live firefighting drills. WI was assessed on the right common carotid artery using an Aloka high-resolution ultrasound. The magnitude of the W1 decreased significantly from 15,925 ± 1,341 to 11,540 ± 886 mmHg m s⁻³, p < 0.05. The magnitude of W2 remained unchanged (W2: from 2,080 ± 200 to 2,144 ± 358 mmHg m s⁻³). Net NA decreased from 53 ± 5 to 40 ± 4 mmHg m s⁻². In conclusion, our data suggest that left ventricular function and arterial-ventricular coupling decreased following live firefighting, and this may be related to the documented increase in risk of clinical events during and after firefighting activities.

Keywords Firefighting · Carotid wave intensity · Arterial-ventricular coupling

Introduction

Sudden cardiac events are the leading cause of line-of-duty firefighter deaths (Centers for Disease Control and Prevention (CDC) 2006). Multiple studies have shown that firefighters have increased rates of acute line-of-duty events due to ischemic heart disease compared to non-firefighters (Baris et al. 2001) and that these events are more likely following fire fighting activity (Kales et al. 2007). Physiological responses to actual or simulated firefighting include near maximal heart rate (HR) (Smith et al. 1996), decreased stroke volume (Smith et al. 2001), increased core temperature (Smith et al. 2001; Smith and Petruzzello 1998), and suppressed immunological response...