

Potential use of EKG for Arrhythmias and Ischemia

Andrea Wilkinson

First Responder Health & Safety Laboratory

Skidmore College

ECG & SMARTER Study

- Why ECG monitoring?
 - Prevention/ Early Detection
 - 85% of damage to the heart happens within two hours of blockage
 - Increase understanding of "trigger"
 - Potentially decreasing number of incidents

Model of CVE in the Fire Service

Specific Concerns

- What/how many arrhythmias could be seen with wearable ECG devices?
- Time points of interest- when should/could devices be worn?
- Visualization of rhythms
- How would data be evaluated?
 - Medical Professional?
 - Automated Interpretation?
 - Accuracy
 - False positives
 - False negatives
 - Ambulatory effects

SMARTER

- Team sought to explore existing technologies to:
 - Better understand usability
 - Explore use models within the Fire Service
 - Develop recommendations for the use of ECG in firefighting for detection of life-threatening arrhythmias and ischemic changes

Previous Research

- 1975- Barnard & Duncan:
 - 15-30 seconds after alarm, HR's increased an average of 47bpm
 - S-T segment changes were observed in ECG shortly after tones dropped
- 2013- Smith et al:
 - Combination of sympathetic nervous system activation, strenuous physical work, heat stress/dehydration, and environmental conditions leads to significant CV strain, mediated by individual characteristics
- 2017- Hunter, et al:
 - 20 minutes of fire simulation training results in EKG-detected ischemia in "healthy fire fighters"

Smith, Barr, and Kales, Extrem Physiol Med, 2013.

Understanding Arrhythmias

- What is it?
 - Abnormal heart rhythm
 - Often reported as feeling like a fluttering or a brief pause
- Pathology that alters the flow of electrical current in the body

Arrhythmia Recognition inoatri Node IGHT ATI LEFT Sinus Rhythm Suproventricular Rhuthms Conduction Defect hhistophila la lada rrhythmia Recognition (poster 1 of 2)

MANY types and classifications of arrhythmias!

Life threatening arrhythmias (LTA)

- Asystole
- Ventricular tachycardia
- Ventricular flutter/fibrillation
- Extreme tachycardia
- Extreme Bradycardia
- Atrial fibrillation
 - Not typically LTA, but has risks

Atrial Fibrillation

- Atrial Fibrillation is the most commonly sustained heart rhythm disorder
 - Electrical signals are fast and erratic
 - Common causes include CAD, valvular heart disease, hypertension, and thyroid disorders
 - In some patients no cause can be found-'lone' atrial fibrillation

Atrial Fibrillation

- AFib itself is not typically life threatening, but complications can lead to life threatening conditions
- Risks:
 - 5X increase risk for stroke (AHA)
 - Heart Failure
 - Chronic fatigue
 - Further arrhythmias
 - Inconsistent blood supply

Risk of Arrhythmia affected by many factors

- SCBA & tool load
- CV fitness
- Underlying CV disease
- Dehydration

FIREFIGHTER PHYSIOLOGICAL MONITORING

ECHNOL

March 28–30, 2018 Washington, <u>DC</u>

• Other systemic health risks

Type of work Intensity/duration Recovery time

Personal RF's BP, body comp, hydration, nutrition, physical activity, smoking

Greatest Risk of Arrhythmia

Environmental Heat, altitude, gear

Polygenic Predisposition

Arrhythmia monitoring

Conduction defects

- AV blocks, RBBB, LBBB
- Chamber enlargement

Example of morphology from select lead positions

Arrhythmia monitoring

- Risk of arrhythmia affected by electrical depolarization and axis rotation
- Single axis lead vector complicates interpretation

Standard ECG

- normal ECG

FIREFIGHTER PHYSIOLOGICAL MONITORING TECHNOLOGY March 28-30, 2018 Washington, DC

Ischemic Conditions

- Ischemia: restricted or reduced blood flow (thus oxygen)
- Ischemic Heart Disease: term given to heart conditions caused by a stenosis of the coronary arteries
 - Also known as: Coronary Artery Disease or Coronary Heart Disease
- Silent Ischemia: asymptomatic ischemic episodes
 - Individuals with history of MI or diabetes are at increased risk
 - An estimated 2-3 million people in the U.S. with "stable" CAD have evidence of asymptomatic ischemia (Stern et al., 2005)

Normal

ST Depression

Ischemic Monitoring

Anterior infarction

Acute myocardial injury patterns

- Anterior infarction
- ST elevation

V3

infarction is visible in some of the V1-V6, I and aVL leads

SCE & ECG Concerns

- Can a Single Lead (SL) ECG show ischemic changes leading up to a SCE?
- How will work/movement affect ECG signal
- Nontraditional electrode placement

Modern ECG Systems

Cardiographs

- Philips Cardiograph: STAR
- Mortara Cardiograph: Veritas
- GE cardiograph

Holter:

- Philips
- Nassif

Patches

- Corventus/Medtronic PiiX
- Medtronic SEEQ
- iRhythem Zio
- Cardiocom Heartcheck

Mobile

AliveCore

- The SMARTER study focused efforts on exploring:
 - WASP (Zephyr) System
 - Equivital
 - AliveCor

WASP (Zephyr) System

- Flame-resistant baselayer shirt and Zephyr Bioharness 3 technology
- Real-time and recorded HR, RR, skin temperature, estimated core temperature, GPS
- Recorded ECG (single lead)
- Many additional fitness variables

WASP (Zephyr) System

- Omnisense Software
 - Live
 - Analysis and Data View

OmniSense Analysis

II+

O mountain biking race / [15 Sep 2012 / 20:19:26] / [00:46:21]

Treadmill Test / [18 Apr 2012 / 14:02:01] / [00:11:51 Beep Test / [20 Apr 2012 / 12:47:32] / [00:14:57]

Soccer Practice / [22 Mar 2012 / 11:36:08] / [01:47:39] Beep Test / [20 Apr 2012 / 12:47:05] / [00:10:26]

Soccer Practice / [22 Mar 2012 / 11:36:08] / [01:47:38] Treadmill Test / [18 Apr 2012 / 12:54:31] / [00:32:08] Beep Test / [20 Apr 2012 / 12:47:07] / [00:19:04]

Isolate the session you want

Drag Up to 16 onto Legen

Select 1 or 2 V Axes

14 Feb 2013

ilter Session List

14 Aug 2010

elect Session

Demo Subject 2

Demo Subject 3

Demo Subject 1

Select Time Variable

Heart Rate Heart Rate Perce Breathing Rate Skin Temperature Posture Activity Peak Acceleration Heart Rate at AT

99

Alpha Delta

88 10

130

B

(**t**)

Alpha Papa

)1

Victor

M

13

75 12

122

101 20

6

Background Shading

Real Time . Elapsed Time

Time (HH:mm:s)

Horizontal Axis

Graph Training Reports Fitness Reports

Demo Subject 2 Soccer Practice / [22 Mar 2012 / 11:36:07] / [01:47:41]

HH:mm:ss HR HR%

00:53:38 174 91.58

12:29:46

200

Legend:

113

Alpha Hotel

Alpha Oscar R

ROG Training Zone Speed Zone Position

Heart Rate : 155 BPM Breathing Rate : 8 BPM Temperature : 33.0 °C

Activity : 0.0 g (Flat) Posture : 90 Degrees Battery: BioH:80% Mic:79%

Heart Rate

Breathing Rate

Activit

Temperature

85 18

Alpha Echo

160 28

90 13

Alpha Romeo

90 14

Ipha Whiske

Hidalgo Equivital System

- LifeMonitor
 - Real-time and recorded ECG, HR, RR, skin & core temperature (with capsule), body position, GPS
- Black Ghost
 - Heat stress, safety, and performance monitoring. Other measures mirror the LifeMonitor.

Hidalgo Equivital System

- Equivital Software
 - Live View
 - Management

100 -

UP - Duation Diff

2 eqView

KardiaMoble AliveCore System

- Live ECG monitoring with Arrhythmia detection
- FDA-cleared for medical-grade ECG recordings
- Atrial Fibrillation algorithm with 97% sensitivity and 98% specificity
- HIPPA Compliant

KardiaMoble AliveCore System

- Mobile and Watch Apps
 - Free app
 - Paid premium subscription
 - \$9.99/month, \$99/year

	WASP/ Zephyr System	Equivital (Hidalgo)	AliveCor (KardiaMobile)
Pros	 Has a commitment for integration within the fire service Options for use: patch, shirt, harness Shirt manufactured by Globe designed to serve as base- layer 	 "Live" ECG signal Black Ghost system being used in military 	 Readily available, commercial device Supporting the Apple Heart Study (Stanford University) Real-time detection Easy to wear/use Allows for simultaneous recording of symptoms
Cons	 Does not provide "live" ECG No arrhythmia detection software Must export data to view waveform 	 Harness is more difficult to wear Harness is not NFPA approved No arrhythmia detection software Requires core temp capsule 	 Requires an app with "baseline" reading Requires 30 seconds of rest/connection with electrode No heat stress information

Data handling in this study

Study/ DB master file

) System	n → HALO → Studies → Philips → V	italConn	ect_Validation +		_	👻 🍫 Search Vitali	
• 9	ihare with 🔻 🛛 Burn 🛛 New folder						
	aami3a_test_wave File folder		aamiBb_test_wave File folder	aamiBc_test_wave File folder		aamiBd_test_wave File folder	
	aami4a_d_test_wave File folder		aami4a_h_test_wave File folder	aami4a_test_wave File folder		aami4b_d_test_wave File folder	
	aami4b_h_test_wave File folder		aami4b_test_wave File folder	Analysis File folder		Battery_life_1 File folder	
	Battery_life_2 File folder		COPD File folder	COPD_home_stairs File folder		COPD_mask_off_on File folder	
	COPD_stair_3_6_9 File folder		COPD_stair_3_6_9_lead_0 File folder	Fluke_performance File folder		Generic Subject Template File folder	
	MIT_noise_118e06_test_file_lead_0 File folder		MIT_noise_118e06_test_file_lead_1 File folder	MIT_noise_118e12_test_file_lead_0 File folder		MIT_noise_118e12_test_file_lead_1 File folder	
	MIT_noise_118e18_test_file_lead_0 File folder		MIT_noise_118e18_test_file_lead_1 File folder	MIT_noise_118e24_test_file_lead_0 File folder		MIT_noise_118e24_test_file_lead_1 File folder	
	MIT_noise_119e06_test_file_lead_0 File folder		MIT_noise_119e06_test_file_lead_1 File folder	MIT_noise_119e12_test_file_lead_0 File folder		MIT_noise_119e12_test_file_lead_1 File folder	
	MIT_noise_119e18_test_file_lead_0 File folder		MIT_noise_119e18_test_file_lead_1 File folder	MIT_noise_119e24_test_file_lead_0 File folder		MIT_noise_119e24_test_file_lead_1 File folder	
	Nic.jog File folder		Paced_resp_10_15_20_40_Lead_1 File folder	Paced_resp_10_15_20_40_Lead_3 File folder		Rate_transition File folder	
	StressProfile_1_Lead_1 File folder		StressProfile_1_Lead_2 File folder	StressProfile_1_Lead_2_1_min_upda te File folder		StressProfile_1_Lead_3 File folder	
	Thermal_Bath_calibration File folder		Thermal_Bath_thermal_gradient File folder	VitalConnectTest-Ton File folder		AAMI EC 13 Microsoft Excel Worksheet 87.9 KB	

Test file structure

Challenges with SL Arrhythmia Monitoring

- Movement artifact
- Waveforms will be likely be more dynamic during job performance
- · Lead placement is a nontraditional vector
 - Repolarization exaggerated
 - Myocardial rotation
 - Exaggerated biphasic presentation
- Irregular rhythms preclude use of beat anticipation methods

Processing with confidence filter

- Data tested for corresponding confidence
- Date below a threshold is discarded
- Raw (unfiltered), 50% and 90% data used
- Statistics (Median, Mean, Mode, Min, Max Ave)
 - If a HR had a confidence below the criteria, it was discarded from the statistics

OmniSense Analysis Display

Zephyr Waveform

Early Findings

- HR usable with confidence filter
- ECG vector shows basic fiduciary references (PQRST)
- ST elevation utility needs proper study (what's the true equivalent lead)
- Unknown front end bandwidth
 - VFIB needs LF range
- Limited ischemic visibility
 - ~ V1 approximation but more posterior visibility

Current Recommendations

- Whenever possible, standard 12-lead ECG is highly preferred
 - IE: in REHAB setting
- Ambulation/work creates large amounts of artifact
- "Live" ECG outputs with cleaning and arrhythmia detection software are highly preferable
- Current technologies do not appear to be deployable for the purpose of ECG monitoring during firefighting

Recommendations

"Treat the patient, not the monitor"

Educate all personnel on signs and symptoms of sudden cardiac events

Encourage prevention

Emphasize early action

- Speak up early when experiencing symptoms- seek help
- 85% of damage to the heart happens within two hours of blockage
- Early Heart Attack Care (EHAC-ACC)

Early Heart Attack Care

EHAC Pledge

"I understand that heart attacks have beginnings that may include chest discomfort, shortness of breath, shoulder and/or arm pain, and weakness. These may occur hours or weeks before the actual heart attack.

I solemnly swear that if it happens to me or anyone I know, I will call 9-1-1 or activate our Emergency Medical Services."

Thank you!

Andrea Wilkinson awilkins@skidmore.edu 518-580-8043

