Validation of the firefighter WFI treadmill protocol for predicting VO₂ max

B. A. Dolezal¹, D. Barr², D. M. Boland¹, D. L. Smith² and C. B. Cooper¹

¹Department of Medicine and Physiology, Exercise Physiology Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA, ²Department of Health and Exercise Sciences, First Responder Health and Safety Laboratory, Skidmore College, Saratoga Springs, NY 12866, USA.

Correspondence to: B. A. Dolezal, Department of Medicine and Physiology, Exercise Physiology Research Laboratory, David Geffen School of Medicine, 10833 Le Conte Avenue, CHS 37–131, University of California, Los Angeles, CA 90095, USA. Tel: +1 310 741 8954; fax: +1 310 206 8211; e-mail: drbducla@gmail.com

Background	The Wellness-Fitness Initiative submaximal treadmill exercise test (WFI-TM) is recommended by the US National Fire Protection Agency to assess aerobic capacity (VO ₂ max) in firefighters. However, predicting VO ₂ max from submaximal tests can result in errors leading to erroneous conclusions about fitness.
Aims	To investigate the level of agreement between VO_2 max predicted from the WFI-TM against its direct measurement using exhaled gas analysis.
Methods	The WFI-TM was performed to volitional fatigue. Differences between estimated VO ₂ max (derived from the WFI-TM equation) and direct measurement (exhaled gas analysis) were compared by paired <i>t</i> -test and agreement was determined using Pearson Product-Moment correlation and Bland-Altman analysis. Statistical significance was set at $P < 0.05$.
Results	Fifty-nine men performed the WFI-TM. Mean (standard deviation) values for estimated and measured VO ₂ max were 44.6 (3.4) and 43.6 (7.9) ml/kg/min, respectively ($P < 0.01$). The mean bias by which WFI-TM overestimated VO ₂ max was 0.9 ml/kg/min with a 95% prediction interval of ±13.1. Prediction errors for 22% of subjects were within ±5%; 36% had errors greater than or equal to ±15% and 7% had greater than ±30% errors. The correlation between predicted and measured VO ₂ max was $r = 0.55$ (standard error of the estimate = 2.8 ml/kg/min).
Conclusions	WFI-TM predicts VO_2 max with 11% error. There is a tendency to overestimate aerobic capacity in less fit individuals and to underestimate it in more fit individuals leading to a clustering of values around 42 ml/kg/min, a criterion used by some fire departments to assess fitness for duty.
Key words	Firefighters; fitness tests; physical fitness.