Final Review Answers

1. Evaluate each of the following limits:

- \(\lim_{x \to 3} \frac{x^2 - 2x - 3}{3-x} = \lim_{x \to 3} \frac{(x+1)(x-3)}{(3-x)} = \lim_{x \to 3} -(x+1) = -4. \)

- \(\lim_{t \to \infty} \frac{t^7 - 5t^6 + 71.6}{6t^6 - 18.3t^2 + 71.6} = \lim_{t \to \infty} \frac{1/t^7 - 5/6t^5 + 71.6/t^4}{6 - 18.3/t^4 + 71.6/t^4} = 0/6 = 0. \) This could also be done by L'Hospital's Rule.

- \(\lim_{h \to 0} \frac{\sin(\pi/2+h)-\sin(\pi/2)}{h} = \sin' (\pi/2) = \cos(\pi/2) = 0. \)

2. Find the derivatives of the following functions:

- \(f(x) = x^2 + 5x - 3. \) \(f'(x) = 2x + 5. \)

- \(g(x) = x^{(2/3)} \tan(x). \) \(g'(x) = (2/3) x^{(-1/3)} \tan(x) + x^{(2/3)} \sec^2(x). \)

- \(h(x) = \frac{(t^2-1)}{(t-1)^2} \) \(h'(x) = \frac{1(t^2-1)-2t(t+1)}{(t-1)^2} = \frac{-t^2-2t-1}{(t-1)^2(t+1)} = \frac{-t-1}{t^2(t+1)} = \frac{-1}{(t-1)^2}. \) An easier way to do this problem is to simplify first: \(h(x) = \frac{1}{t-1} = (t-1)^{-1}, \) so \(h'(x) = -(t-1)^{-2}. \)

- \(m(t) = (t^3 + \cos(t))^{12}. \) \(m'(t) = 12(t^3 + \cos(t))^{11} \cdot (3t^2 - \sin(t)). \)

- \(n(x) = \arcsin(\tan(e^x)). \) \(n'(x) = \frac{1}{\sqrt{1-(\tan(e^x))^2}} \cdot (\sec^2(e^x) \cdot (e^x)). \)

3. Find \(y' = \frac{dy}{dx} \) by implicit differentiation, where \(y \) is a function of \(x \) defined by the relation \(x y^3 + \sin(y) = 0. \)

We take the derivative on both sides of the relation with respect to \(x, \) viewing \(y \) as a function of \(x: \)

\[y^3 + 3x y^2 y' + \cos(y) y' = 0. \]

Solving for \(y', \) we obtain

\[y' = \frac{-y^3}{3x y^2 + \cos(y)}. \]
4. Evaluate the following using the FTC:

- \[\int_1^3 \frac{x+7}{x} \, dx = \int_1^3 \left(1 + \frac{7}{x}\right) \, dx = (x + 7 \ln(x)) \bigg|_1^3 = (3 + 7 \ln(3)) - (1 + 7 \ln(1)) = 2 + 7 \ln(3). \]

- \[\int_0^7 \cos(x) \, dx = \sin(x) \bigg|_0^7 = \sin(7) - \sin(0) = 0 - 0 = 0. \]

The graph of \(y = f(x) = \cos(x) \) on \([0, \pi]\) makes this result clear: one has two congruent regions whose signed areas "cancel out."

\[
\begin{align*}
y &= \cos(x) \text{ on } [0, \pi] \\
\end{align*}
\]

- \[\int_0^1 \frac{1}{1+x^2} \, dx = \arctan(x) \bigg|_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \approx .785. \]

A graph shows this value is reasonable (note the rectangle has area 1).

\[
\begin{align*}
y &= 1/(1+x^2) \\
\end{align*}
\]

5. Let \(f \) be the function whose graph is shown, and let \(F \) be defined by \(F(x) = \int_0^x f(t) \, dt \).

Answer the following questions:

\[
\begin{align*}
y &= f(x) \\
\end{align*}
\]
a) Estimate $F(5)$ and $F(1)$:

$$F(5) = \int_3^5 f(x) \, dx = \text{signed area of "triangle" on } [3, 5], \text{ which is } -(1/2) b \cdot h = -(1/2)(2)(4/3) = -4/3.$$
$$F(1) = \int_1^3 f(t) \, dt = -\int_1^3 f(t) \, dt = -4/3, \text{ since the triangle on } [1, 3] \text{ is congruent to the triangle on } [3, 5].$$

b) Where is F increasing? Explain your answer.

F is increasing where $F' = f$ is positive, which is on the interval $(-3, 3)$. (Why is $F' = f$? By the first part of the Fundamental Theorem of Calculus!)

c) At which value(s) of x does F have local minima? Explain.

A local minimum of F occurs at a critical point such that F' is negative to the left and positive to the right. Since $F' = f$, the critical points are -3 and +3, the values of x where $F'(x) = f(x) = 0$. Of these, -3 has F' negative to the left and positive to the right, so $x = -3$ is a local minimum of F.

d) Where is F concave down? Explain.

F is concave down where $F' = f$ is decreasing, which is on the interval $(0, 5)$ -- or $(0, \infty)$, if trends continue as shown.

6. Referring to the function f whose graph is given in the previous problem, sketch the graph of g, where $g(x) = f(x + 2) + 1$. Also sketch the graph of F that was discussed in the previous problem.

The graph of g is obtained by translating the graph of f to the left by 2 units and vertically upward by 1 unit. We obtain:

Recall that F is the antiderivative of f that passes through the point $(3, 0)$. It has a local minimum at -3 and a local maximum at +3. Here is the graph:
7. Use the definition of the derivative (limit process) to compute \(h'(x) \), where \(h(x) = \frac{1}{x} \). Then find the equation of the line tangent to the graph at the point \((2, 1/2)\).

By definition, \(h'(x) = \lim_{z \to x} \frac{h(z) - h(x)}{z - x} = \lim_{z \to x} \frac{\frac{1}{z} - \frac{1}{x}}{z - x} = \lim_{z \to x} \frac{x - z}{xz(z - x)} = \lim_{z \to x} \frac{-1}{xz} = -\frac{1}{x^2} \). So, the slope of the curve at \(x = 2 \) is \(h'(2) = -1/4 \), and the equation of the tangent line is \(y - (1/2) = (-1/4)(x - 2) \), or \(y = (-1/4)x + 1 \).

\[
\text{Plot}[[1/x, (-1/4)x + 1], (x, -2, 4)]
\]
8. Sketch a graph of a single function f with the following properties:

- $f(0) = 1$, $f(1) = 4$, $f(-2) = 0$;
- $f(x) < 0$ for $x < -2$ and $f(x) > 0$ for $x > -2$;
- $f'(-2) = f'(3) = 0$, and $f'(1)$ is not defined;
- $f'(x) > 0$ for $x < -2$, $-2 < x < 1$, and $x > 3$;
- $f'(x) < 0$ for $1 < x < 3$.

9. A cannonball is fired directly upward, starting from ground level (height = 0), at time $t = 0$ seconds. Let $h(t)$ represent the cannonball’s height above the ground level (in feet) at time t seconds, $v(t) = 192 - 32t$ the cannonball’s vertical velocity (in feet per second) at time t, and $a(t)$ the vertical acceleration at time t seconds.

- **a)** Calculate $\int_{1}^{4} v(t) \, dt$. What does this answer tell you about the cannonball?
- **b)** Showing all work, find a formula for $h(t)$.
- **c)** Showing all work, find a formula for $a(t)$.
- **d)** At what time is the cannonball at the highest point? How high is it at that time?

- **a)** $\int_{1}^{4} v(t) \, dt = \int_{1}^{4} (192 - 32t) \, dt = (192t - 16t^2)|_{1}^{4} = (192\cdot4 - 16\cdot4^2) - (192 - 16) = 512 - 176 = 336$. This is the displacement of the cannonball on the interval [0, 4]; that is, it is the net change in height of the cannonball on this interval. This is because $h(t)$ is an antiderivative of $v(t)$, so the integral equals $h(4) - h(1) = \text{final height} - \text{initial height}$.

- **b)** As just observed, $h(t)$ is an antiderivative of $v(t)$, so $h(t) = 192t - 16t^2 + C$. Since $h(0) = 0$, we see $C = 0$; therefore, $h(t) = 192t - 16t^2$.

- **c)** Since $a(t) = v'(t)$, we get that $a(t) = (192 - 32t)' = -32$ (ft/sec)/sec.

- **d)** The cannonball is at its highest point when it is instantaneously motionless: Solve $v(t) = 0$ to find the time of maximum height. $192 - 32t = 0 \Rightarrow t = 192/32 = 6$. So the maximum height is attained at time $t = 6$ sec, and $h(6) = 192\cdot6 - 16\cdot6^2 = 576$ ft is the maximum height attained.
10. Use the average of the left and right sums with four subintervals to approximate the value of \(\int_{1}^{3} \frac{6}{x} \, dx \).

If we divide the interval \([1, 3]\) into four equal subintervals, their common length is \(\Delta x = \frac{3-1}{4} = \frac{1}{2} \). The subinterval endpoints are \(1 = 2/2, \ 3/2, \ 4/2, \ 5/2, \) and \(6/2 = 3 \). The left sum is therefore \((1/2) \cdot (f(1)+f(3/2)+f(2)+f(5/2))\), which is equal to 7.7:

\[
\begin{align*}
f[x_] &= 6/x; \\
LeftSum[f, 1, 3, 4]
\end{align*}
\]

The sum = 7.7

The right sum is \((1/2) \cdot (f(3/2) + f(2) + f(5/2) + f(3))\), which is equal to 5.7:

\[
\begin{align*}
RightSum[f, 1, 3, 4]
\end{align*}
\]

The sum = 5.7

The average of the left and right sums is \((7.7+5.7)/2 = 6.7\). This should be pretty close to the exact area under the curve, and also pretty close to the Midpoint approximation:
MidpointSum[f, 1, 3, 4]

The sum = 6.53853

11. Evaluate the following using geometry:

- \(\int_{-1}^{2} |x| \, dx = \int_{-2}^{1} |x| \, dx \)

From the graph, we see that \(\int_{-2}^{1} |x| \, dx = \) (area of left triangle) + (area of right triangle) = \(1/2(2)(2) + 1/2(1)(1) = 2.5 \). Therefore, \(\int_{-1}^{2} |x| \, dx = -2.5 \).
\[\int_{-1}^{2} (2 - 3x) \, dx \]

\[
\text{Plot}[2 - 3x, \{x, -1, 2\}, \text{PlotLabel} \rightarrow \text{"y = 2 - 3x"}]
\]

The integral in this case is (area of left triangle) - (area of right triangle). The x-intercept of the line is \(x = 2/3 \). So, the base of the left triangle is \(1 + 2/3 \) and the base of the right triangle is \(2 - 2/3 = 4/3 \). The height of the left triangle is \(2 - 3(-1) = 5 \) and the height of the right triangle is \(-(2 - 3(2)) = -(-4) = 4 \). So the integral is given by

\[
\frac{1}{2} \left(\frac{1}{2} + \frac{2}{3} \right) (5) - \left(\frac{1}{2} \right) \left(\frac{4}{3} \right) (4)
\]

\[
\frac{3}{2}
\]

12. Find the local maxima and minima of the function \(f \), given by \(f(x) = 3x^3 - 9x \), and the global maximum and minimum (outputs) of \(f \) on the interval \([-2,3]\).

The domain of the function is all reals, and \(f \) is differentiable everywhere, so the only critical points are those of the form \(f'(x) = 0 \). The derivative is \(f'(x) = 9x^2 - 9 = 9(x^2 - 1) \), which is 0 at \(x = \pm 1 \). We see that the derivative is positive for \(x < -1 \) and \(x > 1 \), and negative on \((-1, 1)\), so \(f \) is increasing on \((-\infty, -1) \cup (1, \infty)\) and decreasing on \((-1, 1)\), so \(x = -1 \) is a local max and \(x = 1 \) is a local min. On the interval \([-2, 3]\), the global max and the global min can occur either at a critical point or an endpoint.

\[
f[x_] := 3x^3 - 9x
\]

\[
\{f[-2], f[-1], f[1], f[3]\}
\]

\[
\{-6, 6, -6, 54\}
\]

We see that the global min output is -6, which occurs at \(x = -2 \) and \(x = 1 \), and the global max output is 54, which occurs at \(x = 3 \). Here is the plot:
13. You wish to mail a cylindrical package whose combined length and girth (the circumference of a cross section perpendicular to the length) is 84 inches. What are the length and girth of the cylindrical tube with the largest volume that you can mail?

Let \(r \) be the radius of the package, and \(l \) be its length. The girth is then \(2\pi r \), and we want as large a volume as possible, so we choose a package for which length + girth = \(l + 2\pi r = 84 \), so \(r = \frac{84-l}{2\pi} \). The volume of the package is (base area) \(\times \) (length), which is \(\pi r^2 l = \pi \left(\frac{84-l}{2\pi} \right)^2 l = \left(\frac{1}{4\pi} \right) (84^2 l - 168 l^2 + l^3) \). The domain is \([0, 84] \), clearly. Taking the derivative of the volume and setting it equal to 0, we obtain \(84^2 - 336 l + 3 l^2 = 0 \), or \(84 \cdot 28 - 112 l + l^2 = 0 \), or \((l - 28)(l - 84) = 0 \), so the critical points are \(l = 28 \) and \(l = 84 \). From the factored form of the volume function, we see that the volume is 0 when \(l = 84 \) (and \(l = 0 \)), so the max volume occurs when \(l = 28 \) and (therefore) the girth = 56. So the maximum volume occurs when the girth is twice the length.

14. Compute the definite integral of the function \(h \), given by \(h(x) = \frac{1}{x^2} \), on the interval \([1/2, 5/2] \).

\[
\int_{1/2}^{5/2} \frac{1}{x^2} \, dx = \left[\frac{-1}{x} \right]_{1/2}^{5/2} = (-2/5) - (-2/1) = 2 - 2/5 = 8/5. \]
(We used the Fundamental Theorem of Calculus.) We can check with Mathematica's integration function:

\[
\int_{1/2}^{5/2} \frac{1}{x^2} \, dx
\]
15. Use linear approximation to estimate $\sqrt{9.01}$. [Hint: find the best linear approximation to $f(x) = \sqrt{x}$ at $x = 9$.]

The best linear approximation (or linearization) of f at $x = a$ is $L(x) = f(a) + f'(a)(x - a)$. For us, $f(x) = \sqrt{x}$, so $f(9) = 3$ and $f'(x) = \frac{1}{2\sqrt{x}}$, so $f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{6}$. Therefore, $L(x) = 3 + \frac{1}{6}(x - 9)$, so $\sqrt{9.01} = f(9.01) \approx L(9.01) = 3 + \frac{1}{6}(9.01 - 9) = 3 + 0.01/6 = 3.0016666...$ Here is the exact value computed by *Mathematica* to 10 decimal places:

$$\sqrt{9.01} \approx 3.001666204$$

Here is a picture of the function and its tangent line at $x = 9$:

```
Plot[{Sqrt[x], 3 + (1/6) (x - 9)}, {x, 1, 16}, PlotRange -> {.5, 4.5}]
```

16. Find the point that the Mean Value Theorem guarantees will exist for the function $f(x) = \sqrt{x}$ on the interval $[1, 9]$.

The Mean Value Theorem requires that the function be continuous on the closed interval and differentiable on the open interval; this is clearly true for this function and interval. The point c we seek satisfies $f'(c) = \frac{f(9) - f(1)}{9 - 1} = \frac{3 - 1}{8} = \frac{1}{4}$. So $f'(c) = \frac{1}{2\sqrt{c}} = \frac{1}{4}$, so the solution is $c = 4$. The graph illustrates the geometric content: the slope of the chord equals the slope of the tangent at $(c, f(c))$.
17. Sketch the graph of \(y = f(x) = \frac{x^2}{x^2 + 3} \) on the axes provided. Indicate intervals on which the function is increasing and decreasing, concave up and concave down, and label any critical points and points of inflection.

In[8]:= \[f[x_] := x^2 / (x^2 + 3) \]

Note: we took the derivatives by hand in the review session.

In[10]:= Simplify[f'[x]]

Out[10]= \[\frac{6 x}{(3 + x^2)^2} \]

Taking the derivative and simplifying, we obtain the expression above, which is equal to 0 at \(x = 0 \). The derivative has negative values to the left of 0, and positive values to the right, so the function \(f \) decreases on \((-\infty, 0)\) and increases on \((0, \infty)\). This makes \(x = 0 \) a local and global minimum of the function; there are no local maxima.

The second derivative is given by

In[11]:= Simplify[f''[x]]

Out[11]= \[-\frac{18 (-1 + x^2)}{(3 + x^2)^3} \]

Factoring the numerator, it is easily seen that the second derivative is 0 at -1 and at 1. Furthermore, \(f'' \) is negative to the left of -1 and to the right of 1, so the function \(f \) is concave down on those intervals, and \(f'' \) is positive on \((-1, 1)\), so \(f \) is concave up on that interval. Therefore, +1 and -1 are the points of inflection of \(f \). The plot confirms all of these observations:

In[12]:= Plot[f[x], {x, -3, 3}, AspectRatio -> Automatic]

Out[12]=