Anthony Ashmore
Assistant Professor of Physics
Office: BTCIS 380D
Telephone: (518) 580-5121
E-mail: aashmore@skidmore.edu
Research Page: Anthony Ashmore
Education
- M.Phys. (Physics), University of Oxford
- M.A. (Physics), Princeton University
- Ph.D. (Theoretical Physics), Imperial College London
Research Interests
Professor Ashmore’s current research focuses on computational and machine-learning techniques for string theory and quantum field theory. This includes computing numerical “Calabi–Yau” metrics – crucial ingredients for connecting string theory to experiment – and modelling phase transitions in strongly interacting quantum systems. He also studies the kinds of geometry that appear in string theory and supergravity using purely theoretical tools, such as differential geometry and “generalized geometry”.
Before joining Skidmore College in Fall 2024, Prof. Ashmore held postdoctoral research fellowships at the University of Oxford, University of Pennsylvania, University of Chicago and Sorbonne Université.
Prof. Ashmore is currently looking for undergraduates interested in computational physics to join his lab.
Courses
- Introductory Physics I
- Mathematical and Computational Methods
Selected Publications
-
“Deep learning lattice gauge theories”, A. Apte, A. Ashmore, C. Cordova, and T.-C. Huang Phys. Rev. B 110, 165133,[arXiv:2405.14830 [hep-lat]].
-
“Numerical spectra of the Laplacian for line bundles on Calabi–Yau hypersurfaces”, A. Ashmore, Y.-H. He, E. Heyes, and B. A. Ovrut, JHEP 07 (2023) 164, [arXiv:2305.08901 [hep-th]].
-
“Geometric Flows and Supersymmetry”, A. Ashmore, R. Minasian, and Y. Proto, Commun. Math. Phys. 405 1, (2024) 16, [arXiv:2302.06624 [hep-th]].
-
“Calabi-Yau Metrics, Energy Functionals and Machine-Learning”, A. Ashmore, L. Calmon, Y.-H. He, and B. A. Ovrut, International Journal of Data Science in the Mathematical Sciences 01 01, (2023) 49–61, [arXiv:2112.10872 [hep-th]].
-
“Exactly Marginal Deformations and Their Supergravity Duals”, A. Ashmore, M. Petrini, E. L. Tasker, and D. Waldram, Phys. Rev. Lett. 128 19, (2022) 191601, [arXiv:2112.08375 [hep-th]].
-
“Machine learning line bundle connections”, A. Ashmore, R. Deen, Y.-H. He, and B. A. Ovrut, Phys. Lett. B 827 (2022) 136972, [arXiv:2110.12483 [hep-th]].
-
“Calabi-Yau CFTs and Random Matrices”, N. Afkhami-Jeddi, A. Ashmore, and C. Cordova, JHEP 02 (2022) 021, [arXiv:2107.11461 [hep-th]].
-
“Moduli-dependent KK towers and the swampland distance conjecture on the quintic Calabi-Yau manifold”, A. Ashmore and F. Ruehle, Phys. Rev. D 103 10, (2021) 106028, [arXiv:2103.07472 [hep-th]].
-
“Eigenvalues and eigenforms on Calabi–Yau threefolds”, A. Ashmore, J. Geom. Phys. 195 (2024) 105028, [arXiv:2011.13929 [hep-th]].
-
“Machine Learning Calabi–Yau Metrics”, A. Ashmore, Y.-H. He, and B. A. Ovrut, Fortsch. Phys. 68 9, (2020) 2000068, [arXiv:1910.08605 [hep-th]].
-
“Generalising G2 geometry: involutivity, moment maps and moduli”, A. Ashmore, C. Strickland-Constable, D. Tennyson, and D. Waldram, JHEP 01 (2021) 158, [arXiv:1910.04795 [hep-th]].
-
“Exceptional Calabi–Yau spaces: the geometry of N = 2 backgrounds with flux”, A. Ashmore and D. Waldram, Fortsch. Phys. 65 1, (2017) 1600109, [arXiv:1510.00022 [hep-th]].